1.transforms.Compose的含义与原理
2.Python图像库PIL
Python图像库PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了。其官方主页为:PIL。 PIL历史悠久,原来是只支持python2.x的版本的,后来出现了移植到python3的库pillow,pillow号称是friendly fork for PIL,其功能和PIL差不多,但是支持python3。本文主要介绍PIL那些最常用的特性与用法,主要参考自:http://www.effbot.org/imagingbook
Python图像库PIL的类Image及其方法介绍_leemboy的博客-CSDN博客_pilPython图像库PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了。其官方主页为:PIL。 PIL历史悠久,原来是只支持python2.x的版本的,后来出现了移植到python3的库pillow,pillow号称是friendly fork for PIL,其功能和PIL差不多,但...https://blog.csdn.net/leemboy/article/details/83792729
3. nn.Flatten()——展平层
pytorch自学笔记——多层感知机_还是那个狗蛋的博客-CSDN博客import torchfrom torch import nnfrom d2l import torch as d2l#接一下数据集batch_size = 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)#定义模型net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear.https://blog.csdn.net/weixin_50774105/article/details/117754596Pytorch:torch.flatten()与torch.nn.Flatten()_Super_user_and_woner的博客-CSDN博客_nn.flattentorch.flatten(x)等于torch.flatten(x,0)默认将张量拉成一维的向量,也就是说从第一维开始平坦化,torch.flatten(x,1)代表从第二维开始平坦化。import torchx=torch.randn(2,4,2)print(x)z=torch.flatten(x)print(z)w=torch.flatten(x,1)print(w)输出为:tensor([[[-0.9814, 0.8251], [ 0.8197, -1.https://blog.csdn.net/Super_user_and_woner/article/details/120782656
4.如何在PyTorch中初始化权重
net = nn.Sequential(nn.Flatten(),
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
如何在PyTorch中初始化权重?https://qastack.cn/programming/49433936/how-to-initialize-weights-in-pytorch