在下面的程序中:
- 类SurfFeatureDetector中,利用类内的detect函数可以检测出SURF特征的关键点,保存在vector容器中。
- 使用 DescriptorExtractor 接口来寻找关键点对应的特征向量. 特别地:
- 使用 SurfDescriptorExtractor 以及它的函数 compute 来完成特定的计算.将之前的vector变量变成向量矩阵形式保存在Mat中
- 使用 类BruteForceMatcher 中的match来匹配两幅图像的特征向量。
- 使用函数 drawMatches 来绘制检测到的匹配点.
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/nonfree/nonfree.hpp>
#include<opencv2/legacy/legacy.hpp>
using namespace cv;
int main( int argc, char** argv )
{
Mat img_1 = imread( "F:\\VS2010\\OpenCVPro\\OpenCVTest\\Pic\\6.jpg",CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( "F:\\VS2010\\OpenCVPro\\OpenCVTest\\Pic\\7.jpg", CV_LOAD_IMAGE_GRAYSCALE );
if( !img_1.data || !img_2.data )
{ return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 );
//-- Step 3: Matching descriptor vectors with a brute force matcher
BruteForceMatcher< L2<float> > matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
//-- Draw matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches );
//-- Show detected matches
imshow("Matches", img_matches );
waitKey(0);
return 0;
}