数学
文章平均质量分 84
makeway123
这个作者很懒,什么都没留下…
展开
-
矩阵论 第一章 基础概念和定律
数学基础之矩阵篇理论概念: 思考的时候可能有用数域: 一个数集对四则运算封闭(四则运算的结果仍在数集内)则称之为数域. Q,R,C都是数域,而Z不是数域因为对除法不封闭.加群: 一个非空集合V, 若V中有一种规则称之为加法"+", 满足交换律 a+b=b+a结合律 a+b+c=a+(b+c)存在零元 (任意u∈V有u+0=u) 存在唯一负元 (任意u∈V有唯一-u使 u +原创 2014-01-03 22:33:33 · 3182 阅读 · 0 评论 -
矩阵论 第三章 矩阵的广义逆与线性方程组
广义逆主要是为了把逆计算推广到奇异矩阵和非方阵. 广义逆矩阵是Moore首先明确提出来, 凭借他天才的几何直觉,利用正交投影算子来定义广义逆,但由于这类定义较为抽象而且不能进行有效运作,所以在之后的30年并未引起人们的注意.直到1955年,Penrose以更直接明确的代数形式给出了Moore广义逆矩阵的定义,他用四个方程再次定义了广义逆,并证明了A+的唯一性,还建立了A(1)与线性方程组Ax=b的原创 2014-01-04 18:22:08 · 5406 阅读 · 1 评论 -
矩阵论 第二章 矩阵的分解
1. QR分解(UR分解):这是最基础的分解.定理1: 设满秩方程A∈R(n x n), 则存在正交矩阵Q及正线(主对角线上元为正)上三角阵R,满足 A = QR, 且分解唯一.构造性证明: 将A的n个列向量正交化(斯密特正交化)为y1,y2...yn, 然后标准化为z1,z2...zn, 则Q即为{z1,z2...zn}, R为: rii = ||yi|| , rij = (xj,原创 2014-01-04 00:01:36 · 9197 阅读 · 0 评论 -
矩阵论 第四章 矩阵分析(2) 特征值估计,矩阵级数
一. 特征值估计特征值是矩阵很重要的性质,当阶数过高的时候, 计算特征值就很困难,所以需要估计.范数的内容参见 矩阵分析(1).定理1: 设A的特征值为 λ1,λ2,.. λn. 则 |λi| ≤ ||A||, 其中矩阵范数为行范数和列范数. 且|λi|² ≤ ||A||, 其中矩阵范数为谱范数.定义盖尔圆盘(Gerschgorin): 方阵A = (aij), 令δi =原创 2014-01-04 23:21:13 · 2075 阅读 · 0 评论 -
概率论初步
概率论还是挺有用的,记下来以后方便查阅.读书笔记 - :Sheldon M.Ross著,郑忠国等译第一章 组合分析多项式系数: 道理很简单, n个物体分成r组,每组分别是n1,n2...nr个. 一共的分法就是 C(n,n1) * C(n-n1,n2) ... *C(n-n1-n2.. , nr) = n! / (n1!n2!...nr!).方程的整数个解: x1 + x2 + x原创 2013-12-31 10:05:50 · 1485 阅读 · 0 评论 -
矩阵论 第四章 矩阵分析(1) 范数
这章主要讲的是矩阵函数.1. 范数一.平时说的绝对值就是一种范数.范数也就是绝对值概念的扩展,目的是用某种方法衡量一个矢量的度量. 比如二维坐标的长度.范数的定义:设V是数域F上的线性空间,若任意x∈V, 均对应一个数||x||满足:正定性: ||x||≥0, 且 ||x||=0当且仅当x=0;齐次性: 任意k∈F, x∈V, ||kx|| = |k|原创 2014-01-04 22:28:50 · 2889 阅读 · 0 评论 -
Chico and Dico ——根据任意4张扑克猜第5张牌
忘记在哪里看到这个好玩的地方了:Using your head is permittedhttp://www.brand.site.co.il/里面都是一些有意思的数学题。挑其中一些翻译一下,说说自己的理解~May 2007 riddle“Chico和Dico是一对非常著名的魔术师。下面这个魔术常常出现在他们的节目中:Chico首先掏出一副标准的扑克翻译 2015-08-28 23:14:25 · 4531 阅读 · 2 评论