1. QR分解(UR分解):
这是最基础的分解.
定理1: 设满秩方程A∈R(n x n), 则存在正交矩阵Q及正线(主对角线上元为正)上三角阵R,满足 A = QR, 且分解唯一.
构造性证明: 将A的n个列向量正交化(斯密特正交化)为y1,y2...yn, 然后标准化为z1,z2...zn, 则Q即为{ z1,z2...zn}, R为: rii = ||yi|| , rij = (xj, zi) (i≥j).
有效性代入计算即可证明. 唯一性证明思路: 设A=Q1R1 = Q2R2, 右乘R1的逆, 然后利用Q1为正交矩阵证明R1=R2从而Q1=Q2.
-当A为酉空间,有相似定理,将Q换成酉矩阵U.
-当A为列满秩的高阵,也有类似定理. (行满秩的矮阵应该也有,计算标准正交Q的时候用行向量计算,相应的R也要换.)
-QR分解可用于方程Ax=b求解.当A是满秩方阵,则解唯一; 当Ax=b不相容,则由Rx=Q^T b得到的解是最小二乘解. 证明可直接写出最小二乘定义得到.
2. 正规矩阵及Schur分解:
对任意方阵A都存在可逆矩阵P,使P^-1 A P 为一个上三角矩阵. (由归纳法证)
将P作QR分解,则可以得到Schur分解: 任意方阵A存在正交矩阵Q(U)使 Q^T A Q 为一上三角阵,且对角元为A的特征值. (相应酉空间为 U阵和U^H. ^H即共轭转置). (证明要点是这里的Q就是P分解中的Q, Q^T A Q = Q^T PKP^-1 Q,再分解.)
正规矩阵: 设A∈C(n x n), 若A满足 A^H A = A A^H,则称A为正规矩阵(规范阵). 实对称阵,实反对称阵,Hermite阵,反Hermite阵,正交阵,酉阵都是正规矩阵. 正规阵是单纯矩阵.
正规阵 等价于 A酉相似于一个对角阵 等价于 A有n个特征向量构成一组n维标准正交基.
推论1: A为实对称阵 等价于 A的特征值全为实数且存在正交阵Q使得Q^T A Q=di