矩阵论 第四章 矩阵分析(1) 范数

本文介绍了矩阵分析中的范数概念,包括向量范数的定义、性质和常见类型,如1范数、无穷范数和2范数。同时,阐述了矩阵范数的定义,强调了矩阵乘积范数的相容性,并探讨了矩阵范数与向量范数之间的关系,如Frobenius范数及其特性。此外,还讨论了算子范数和谱半径在矩阵理论中的应用。
摘要由CSDN通过智能技术生成

这章主要讲的是矩阵函数.


1. 范数

一.

平时说的绝对值就是一种范数.

范数也就是绝对值概念的扩展,目的是用某种方法衡量一个矢量的度量. 比如二维坐标的长度.

范数的定义:

设V是数域F上的线性空间,若任意x∈V, 均对应一个数||x||满足:

  1. 正定性: ||x||≥0, 且 ||x||=0当且仅当x=0;
  2. 齐次性: 任意k∈F, x∈V, ||kx|| = |k| ||x||;
  3. 三角不等性: 任意x,y∈V, 有 ||x+y|| ≤ ||x||+||y||.

则称V为赋范线性空间, ||x|| 称为x的范数. 以上也是范数的三条公理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值