矩阵论 第四章 矩阵分析(2) 特征值估计,矩阵级数

本文深入探讨了矩阵分析中的特征值估计,通过定义盖尔圆盘来理解和估算矩阵的特征值。此外,还介绍了矩阵级数的概念,包括其收敛条件和矩阵幂级数的性质,特别是当ρ(A) < 1时,级数和为(I - A)^-1。
摘要由CSDN通过智能技术生成

一. 特征值估计

特征值是矩阵很重要的性质,当阶数过高的时候, 计算特征值就很困难,所以需要估计.

范数的内容参见 矩阵分析(1).

定理1: 设A的特征值为 λ1,λ2,.. λn. 则 |λi| ≤ ||A||, 其中矩阵范数为行范数和列范数. 且|λi|² ≤ ||A||, 其中矩阵范数为谱范数.

定义盖尔圆盘(Gerschgorin): 方阵A = (aij),  令δi = A中第i行元素绝对值之和 - |aii|. 也就是δi 为 第i行除了对角元之外元素的绝对值之和.则盖尔圆Gi 为以aii为圆心,以δi为半径的圆盘.

A有n个盖尔圆.


定理2:  A的n个盖尔圆 G1, G2, .. Gn, 有以下特性: 

1) A的任一特征值 λ ∈∪(i=1, n)Gi. 

2) 孤立的盖尔圆内有且只有一个特征值, 联通的盖尔圆内,几个盖尔圆联通就有几个特征值.

由盖尔圆的特性,可以总结出如下推论:

1. 若原点不在A的盖尔圆内,则A非奇异.

2. 若A对角占优, 即 |aii| > δi,(包括行对角占优和列对角占优), 则A非奇异.

3. 若A的n个盖尔圆两两不相交,则A有n个互异的特征值,从而A是单纯矩阵.

4. 若实方阵A有k个孤立的盖尔圆,则A至少有k个相异的实特征值. 事实上,A的n个盖尔圆的圆心都在实轴上,每个孤立的盖尔圆只有一个特征值,而

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值