台湾国立大学(林轩田)《机器学习技法》(第2讲)Dual Support Vector Machine

课程地址:https://class.coursera.org/ntumlone-001/class
课件讲义:http://download.csdn.net/download/malele4th/10212756
注明:文中图片来自《机器学习技法》课程和部分博客
建议:建议读者学习林轩田老师原课程,本文对原课程有自己的改动和理解

Lecture 2:Dual(对偶) Support Vector Machine

上节课我们主要介绍了线性支持向量机(Linear Support Vector Machine)。Linear SVM的目标是找出最“胖”的分割线进行正负类的分离,方法是使用二次规划来求出分类线。本节课将从另一个方面入手,研究对偶支持向量机(Dual Support Vector Machine),尝试从新的角度计算得出分类线,推广SVM的应用范围。

目录

1 Motivation of Dual SVM

首先,我们回顾一下,对于非线性SVM,我们通常可以使用非线性变换将变量从x域转换到z域中。然后,在z域中,根据上一节课的内容,使用线性SVM解决问题即可。上一节课我们说过,使用SVM得到large-margin,减少了有效的VC Dimension,限制了模型复杂度;另一方面,使用特征转换,目的是让模型更复杂,减小 Ein 。所以说,非线性SVM是把这两者目的结合起来,平衡这两者的关系。

那么,特征转换下,求解QP问题在z域中的维度设为d+1,如果模型越复杂,则d+1越大,相应求解这个QP问题也变得很困难。当d无限大的时候,问题将会变得难以求解,那么有没有什么办法可以解决这个问题呢?一种方法就是使SVM的求解过程不依赖d,这就是我们本节课所要讨论的主要内容。
这里写图片描述
比较一下,我们上一节课所讲的Original SVM二次规划问题的变量个数是d+1,有N个限制条件;而本节课,我们把问题转化为对偶问题(’Equivalent’ SVM),同样是二次规划,只不过变量个数变成N个,有N+1个限制条件。这种对偶SVM的好处就是问题只跟N有关,与d无关,这样就不存在上文提到的当d无限大时难以求解的情况。

如何把问题转化为对偶问题(’Equivalent’ SVM),其中的数学推导非常复杂,本文不做详细数学论证,但是会从概念和原理上进行简单的推导。

还记得我们在《机器学习基石》课程中介绍的Regularization中,在最小化Ein的过程中,也添加了限制条件: wTwC 。我们的求解方法是引入拉格朗日因子λ,将有条件的最小化问题转换为无条件的最小化问题: minEaug(w)=Ein(w)+λNwTw ,最终得到的w的最优化解为:
这里写图片描述

所以,在regularization问题中,λ是已知常量,求解过程变得容易。那么,对于dual SVM问题,同样可以引入λ,将条件问题转换为非条件问题,只不过λ是未知参数,且个数是N,需要对其进行求解。

这里写图片描述
这里写图片描述
这里写图片描述
下面,我们利用拉格朗日函数,把SVM构造成一个非条件问题:
这里写图片描述

该最小化问题中包含了最大化问题,怎么解释呢?
首先我们规定拉格朗日因子 αn0 ,根据SVM的限定条件可得:

  • (1yn(wTzn+b))<=0 ,如果没有达到最优解,即有不满足 (1yn(wTzn+b))<=0 的情况,因为 αn0 ,那么可能有 nαn(1yn(wTzn+b))>=0 。对于这种大于零的情况,其最大值是无解的。
  • 如果对于所有的点,均满足 (1yn(wTzn+b))<=0 ,那么必然有 nαn(1yn(wTzn+b))<=0 ,则当 nαn(1yn(wTzn+b))=0 时,其有最大值,最大值就是我们SVM的目标: 12wTw

因此,这种转化为非条件的SVM构造函数的形式是可行的。

2 Lagrange Dual SVM

现在,我们已经将SVM问题转化为与拉格朗日因子 αn 有关的最大最小值形式。
已知 αn0 ,那么对于任何固定的α′,且 α'n0 ,一定有如下不等式成立:
这里写图片描述

对上述不等式右边取最大值,不等式同样成立:
这里写图片描述

上述不等式表明,我们对SVM的min和max做了对调,满足这样的关系,这叫做Lagrange dual problem。不等式右边是SVM问题的下界,我们接下来的目的就是求出这个下界。

已知≥是一种弱对偶关系,在二次规划QP问题中,如果满足以下三个条件:

  • 函数是凸的(convex primal)
  • 函数有解(feasible primal)
  • 条件是线性的(linear constraints)

那么,上述不等式关系就变成强对偶关系,≥变成=,即一定存在满足条件的解(b,w,α),使等式左边和右边都成立,SVM的解就转化为右边的形式。

经过推导,SVM对偶问题的解已经转化为无条件形式:
这里写图片描述

(1)其中,上式括号里面的是对拉格朗日函数L(b,w,α)计算最小值。那么根据梯度下降算法思想:最小值位置满足梯度为零。首先,令L(b,w,α)对参数b的梯度为零:
这里写图片描述
那么,我们把这个条件代入计算max条件中(与αn≥0同为条件),并进行化简:
这里写图片描述

(2)这样,SVM表达式消去了b,问题化简了一些。然后,再根据最小值思想,令L(b,w,α)对参数w的梯度为零:
这里写图片描述
那么,同样我们把这个条件代入并进行化简:
这里写图片描述

(3)这样,SVM表达式消去了w,问题更加简化了。这时候的条件有3个:
这里写图片描述
这里写图片描述

总结一下,SVM最佳化形式转化为只与αn有关:
这里写图片描述

其中,满足最佳化的条件称之为Karush-Kuhn-Tucker(KKT):
这里写图片描述

在下一部分中,我们将利用KKT条件来计算最优化问题中的α,进而得到b和w。

3 Solving Dual SVM

上面我们已经得到了dual SVM的简化版了,接下来,我们继续对它进行一些优化。首先,将max问题转化为min问题,再做一些条件整理和推导,得到:
这里写图片描述

显然,这是一个convex(凸)的QP问题,且有N个变量αn,限制条件有N+1个。则根据上一节课讲的QP解法,找到Q,p,A,c对应的值,用软件工具包进行求解即可。
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

值得注意的是,计算b值,αn>0时,有 yn(wTzn+b)=1 成立。 yn(wTzn+b)=1 正好表示的是该点在SVM分类线上,即fat boundary(胖边界)。也就是说,满足αn>0的点一定落在fat boundary上,这些点就是Support Vector。这是一个非常有趣的特性。

4 Messages behind Dual SVM

回忆一下,上一节课中,我们把位于分类线边界上的点称为support vector(candidates)。本节课前面介绍了αn>0的点一定落在分类线边界上,这些点称之为support vector(注意没有candidates)。也就是说分类线上的点不一定都是支持向量,但是满足αn>0的点,一定是支持向量。
这里写图片描述
SV只由αn>0的点决定,根据上一部分推导的w和b的计算公式,我们发现,w和b仅由SV即αn>0的点决定,简化了计算量。这跟我们上一节课介绍的分类线只由“胖”边界上的点所决定是一个道理。也就是说,样本点可以分成两类:一类是support vectors,通过support vectors可以求得fattest hyperplane;另一类不是support vectors,对我们求得fattest hyperplane没有影响。
这里写图片描述

回过头来,我们来比较一下SVM和PLA的w公式:
这里写图片描述

我们发现,二者在形式上是相似的。wSVM由fattest hyperplane边界上所有的SV决定,wPLA由所有当前分类错误的点决定。wSVM和wPLA都是原始数据点ynzn的线性组合形式,是原始数据的代表。
这里写图片描述

总结一下,本节课和上节课主要介绍了两种形式的SVM,一种是Primal Hard-Margin SVM,另一种是Dual Hard_Margin SVM。Primal Hard-Margin SVM有d^+1个参数,有N个限制条件。当d^+1很大时,求解困难。而Dual Hard_Margin SVM有N个参数,有N+1个限制条件。当数据量N很大时,也同样会增大计算难度。两种形式都能得到w和b,求得fattest hyperplane。通常情况下,如果N不是很大,一般使用Dual SVM来解决问题。

这里写图片描述

这节课提出的Dual SVM的目的是为了避免计算过程中对d^的依赖,而只与N有关。但是,Dual SVM是否真的消除了对d^的依赖呢?其实并没有。因为在计算 qn,m=ynymzTnzm 的过程中,由z向量引入了d^,实际上复杂度已经隐藏在计算过程中了。所以,我们的目标并没有实现。下一节课我们将继续研究探讨如何消除对d^的依赖。
这里写图片描述

总结

本节课主要介绍了SVM的另一种形式:Dual SVM。我们这样做的出发点是为了移除计算过程对d^的依赖。Dual SVM的推导过程是通过引入拉格朗日因子α,将SVM转化为新的非条件形式。然后,利用QP,得到最佳解的拉格朗日因子α。再通过KKT条件,计算得到对应的w和b。最终求得fattest hyperplane。下一节课,我们将解决Dual SVM计算过程中对d^的依赖问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值