线性代数二

     1. 由m行n列数组成的数表称为矩阵,

2. 几种特殊的矩阵:

1) 零矩阵:元素全部为0的矩阵称为零矩阵,记作0

2) 行矩阵:m==1 即仅有一行的矩阵称为行矩阵,

3)列矩阵:n==1 即仅有一列的矩阵称为列矩阵

4) 方阵:m==n 即行数 == 列数 时,称为n阶方阵。

对于方阵,自左上角到右下角的连线称为主对角线

5) 特殊方阵

(1)三角方阵:非零元素只出现在主对角线上方的称为上三角方阵;非零元素只出现在主对角线下方的称为下三角方阵,

(2)对角方阵:非零元素只出现在主对角线上的方阵称为对角方阵。

(3)数量方阵:主对角线上是相同的非零元素,其余均为0的方阵称为数量方阵。

(4)单位方阵:对角线上的元素全为1,其余元素全为0的方阵,称为单位方阵,记作E

(5)对称方阵:n阶方阵,Aij = Aji ,则称之为对称方阵。

2.1 矩阵的线性运算: 主要包含加减以及数乘三种运算。

1) 矩阵相等:两个矩阵的对应行列元素相等,即矩阵相等。

2)矩阵的加减法:必须是同型矩阵才能做加法和减法,计算步骤即对应元素加减。

3)矩阵的数乘:即一个数诚乘以一个矩阵,等效于乘以每个元素。

注意,上述三种矩阵的线性运算满足交换律,结合律,分配律。(即简单的运算,没有特殊规则)

2.2 矩阵的乘法以及方阵的幂 (注意只有方阵才有可能有幂的概念)

1) 矩阵乘法结果中的元素 与 原来的元素之间的关系:以AB = C为例,则:

Cij = A的 i 行与B的 j 列的对应元素的乘积 之和。

2) Amxn * Bnxk =Cmxk 即左边的是m行n列, 右边的是n行k列,则乘积的结果为 m行k列

------------------1----------

3) 只有当左边的列数与 右边的行数相同的时候才能相乘。

4) 乘积的 i 行数 j 列的元素是 左矩阵的 i 行与右矩阵的 j 列对应元素乘积之和。 

------------------1-----------

5)矩阵乘法属于非线性运算,其性质:

(1)一般不满足交换律,即AB  != BA

(2)不满足消去律,因为两个非零矩阵相乘有可能等于零。即 AB  = AC ,  无法推导出 B==C。

(3) 满足结合率,即(AB)C = A(BC)

(4) 满足分配律,即A(B+C) = AB+AC;   

(5)数乘结合率 k(AB)  =  (kA)B  = A(kB)   k为常数。

(6)EA =  AE = A 即E在乘法中的作用相当于普通乘法中的 1.

(7)利用矩阵乘法以及矩阵相等的概念,可以把线性方程组改写为矩阵的形式,即Ax=y  

        其中A为系数矩阵   x为未知数向量   y为右侧的0幂次的常数项。

6) 利用乘法可以定义方阵的幂:(注意一个矩阵要想求幂次,则必须是方阵)

(1)A^k * A^l  == A^(k+l) 

  (2) [A(^k)] ^l = A^(k*l)  

  (3) 由于乘法不满足交换律,所以一般(AB)^k  != (A^k) * (B^k) 

  (4) 如果A^k ==0 ,   也不能说明 A == 0

7) 矩阵的转置:也是一种运算,满足一定的定理。

(1)A的转置记作 AT , 如果原来的A是 m 行 n 列,则AT为 n 行 m 列。

(2)(AT)T = A  即连续两次转置则变回原来的

(3) (A+B)T =  AT + BT     因为加法是线性运算 

  (4) (kA)T = kAT                       因为数乘也是线性运算

(5)(A*B)T  == BT*AT

8) 方阵的行列式:注意必须是方阵。

方阵A的元素按照原来的次序构成的行列式称为A的行列式记作 detA  或者 |A|

注意方阵是数表,  方阵的行列式是一个数值。方阵行列式有如下运算规则

(1) |AT| = |A|

(2)|kA| = (k^n) |A|  即  kA的行列式等于 A的行列式乘以k的n次方。

(3)|AB| = |A| |B|    该性质可用于证明一些矩阵的性质

2.3 逆矩阵:注意必须是n阶方阵才有逆矩阵。 

1) 定义:对于n阶方阵A,如果存在同阶方阵B,使得AB==BA==E,则称方阵A是可逆的,并把方阵B称为方阵A的逆矩阵,记作 A^-1  

2) 逆矩阵的唯一性:如果方阵A可逆,则其逆唯一,其证明用到矩阵乘法的分配律。

3)逆矩阵存在的充要条件:方阵对应的行列式的值不等于0. 

        (1) 其证明用到方阵的行列式的性质:|A*B| = |A|*|B|。

       (2) 奇异矩阵和非奇异矩阵的概念:其对应的行列式的值非零,则非奇异矩阵; 对应的行列式为零,则奇异矩阵。

4) 逆矩阵的求解: A^-1  =  (A*) / ( |A| )   其中(A*)是 A 的伴随矩阵,

        (1)求解步骤:分别求出原来矩阵的每个元素的代数余子式的值(按照行列式的规则计算),放置到对应位置上,即伴随矩阵。

        (2)求解其行列式的值,然后取倒数,

        (3)用第二部得到的倒数数乘第一步得到的矩阵,即遍历每个元素,数乘该倒数。

5) 逆矩阵的一些性质:

        (1)n阶方阵A如果存在逆矩阵,则其逆矩阵的逆 等于A。

        (2)方阵A可逆,且k != 0,则 kA 可逆,且(kA)的逆为 (1/k)*A^-1  即kA的逆:常数的倒数乘以A 的逆。

        (3)若A,B同为方阵且均可逆,则AB也可逆,且(AB)^-1 = (B^-1)(A^-1), 即同阶方阵AB相乘的逆矩阵等于B的逆矩阵乘以A的逆矩阵(注意顺序变了)

        (4) A可逆,则AT也可逆,且AT^-1 = (A^-1)T  即A转置的逆,等于A的逆矩阵的转置。

注意实际求解逆矩阵的时候,第一步是先遍历重写每个元素(各个元素的新值即其对应的代数余子式计算得到(按照行列式的规则计算)),然后求出原矩阵的行列式的倒数,分别数乘每个新元素即可。

6) 逆矩阵存在的前提下,有如下推论:

        (1)如果 AX = B,则X=(A^-1)B    即两边同时左乘 A^-1  

           (2) XA = B, 则 X = B(A^-1)   即两边同时右乘(A^-1)

           (3) AXB = C , 则X=(A^-1)C(B^-1)  即两边同时先左乘A的逆矩阵,然后两边再同时右乘B的逆矩阵。

2.4 矩阵的初等变换:

1) 矩阵的初等变换来自于线性方程组的初等变换,有三种:

        (1)将两个方程位置对调

        (2)一个方程两边同时乘以非零常数

        (3)将一个方程两边同乘非零常数以后加到另一个方程上。

上述三种变换统称为线性方程组的初等变换,线性方程组经过初等变换后解不变。且对应的可以衍生出矩阵的初等变换。

2) 矩阵的初等变换:又称为矩阵的初等行变换  或者  列变换

        (1)对调变换:将矩阵的两行或者两列对调。记作 ri <-->rj   或者 ci<-->cj 

        (2)数乘变换:矩阵的某行(列)同乘非零常数,i行乘以k,记作  kri

        (3)乘加变换:将矩阵的某行元素同乘非零常数,然后加到另一行。

3)矩阵A经过有限次初等变换后得到矩阵B,则称 A和 B 等价  记作 A->B. 有如下性质:

        (1)自反性: A->A 

        (2)对称性:A->B  则 B->A 

        (3)传递性:A->B   B->C      则 A->C

4) 方阵经过初等变换后其非奇异性不会发生变化,即非奇异方阵初变后仍为非奇异方阵。从根源上说,是因为三种初变都不会影响方阵对应的行列式非零性

5) 任何非奇异方阵都可以经过有限次的初等变换  化为 单位阵。

6) 矩阵的秩:是矩阵的一个关键特征,

        (1)矩阵的子式:在m行n列矩阵中任取k行k列【k< min(m, n)】,组成一个k阶行列式,称为矩阵的k阶子式,如果该行列式值非零,则称为非零子式。

             注意,取得是k行k列组成的k阶行列式。

      (2)矩阵的最高阶非零子式的阶数称为该矩阵的秩。记作 r(A) = k.

                注意:上文对非零子式的定义中,是只要有一个k阶子式非零即可,而非所有的k阶子式非零;此外从定义中可以推到出:如果矩阵的秩为k,则所有的k+1 阶子式的值均为0.

        (3)特别的,如果方阵A为n阶非奇异方阵,即方阵 A对应的行列式 det(A)  != 0, 则r(A) = n ,即n阶非奇异方阵的秩等于n 。

        (4)满秩方阵:【首先是方阵,才会有满秩的概念】:即(3)中提到的,结合之前的概念,满秩方阵,可逆方阵,非奇异方阵是等价的。

        (5)矩阵经过有限次初等变换,秩不变,即初等变换不改变矩阵的秩。

                注意,上述结论的缘由是:对矩阵作初等变换,相当于对其子行列式做化简,(行列式进行三种变换的时候,其非零姓不会改变

        (6)通过结论(5)我们可以得知另外一种求解秩的方法,即对矩阵进行初等行变换,将其中部分行的元素化简为0,则非零行的行数即秩。

            注意矩阵的初等变换与行列式不同,【行列式本质上是一个多项式,交换两行变号】,但是矩阵是数表,对应一个多元线性方程,三种初等变换【交换两行,某行数乘,多行数乘然后相加】,一个矩阵经过若干次初等变换,与原矩阵等价

            (7)求矩阵的秩,为什么要用初等变换化简:只要能化简为行阶梯形,此时非零行的行数即为矩阵的秩。

             (8)行阶梯形矩阵:(a)零行位于非零行的下面; (b)各非零行的首个非零元素的列标随着行标的增加而增加。 

            (9)行最简形矩阵:(a)行阶梯形矩阵  (b)各行的首个非零元素为1  (c)各行的首个非零元素[1]所在的列的其他元素均为0.   

7) 初等方阵  对应三种初等变换【交换两行, 某行数乘, 多行数乘后相加】 

           (1)单位方阵E经过一次初等变换得到的方阵称为初等方阵。

           (2)由上面的定义可知,共有三种初等方阵

                               (a)E对调两行i j得到 初等对调方阵。记作 E(i, j)

                               (b)E第 i 行数乘 k 得到 初等数乘方阵, 记作 E[i(k)]      ,

                               (c)E第 j 行乘以 k 倍加到 i 行,得到初等乘加方阵,记作 E[i, j(k)].

          (3)初等方阵的转置:仍为初等方阵。准确来说,初等对调方阵和初等数乘方阵与转置前完全一致;乘加方阵的转置,E[i, j(k)]  变为  E[i(k), j] 可以简单的画图验证一下。

          (4)初等方阵的逆:其逆矩阵为同种类型的初等方阵:

                                   (a)初等对调矩阵的伴随矩阵是其本身,记作 E[i, j] 的逆 E[i, j]

                                   (b)初等数乘矩阵的伴随矩阵是 记作 E[i(k)] 的逆 E[i(1/k)] 即数乘矩阵的逆仍是数乘矩阵,只不过该行的数乘因子变为(1/k)

                                   (c)初等乘加矩阵的逆:与书上的描述不一致 书上的描述是 E[i, j(k)] 的逆,等于 E[i, j(-k)]  但是实际为 E[j, i(k)]  即i ,j的位置对调。                         

8) 初等方阵与初等变换的关系:

        (1)m行n列矩阵的初等行变换《===》用初等方阵左乘该矩阵

                    (a)初等方阵为m行m列

        (2)m行n列矩阵的初等列变换 《===》用初等方阵右乘该矩阵

                    (b)初等方阵为n行n列

        (3)举例如下:对调两行 Amxn(i, j) = E(i,j) Amxn   其中E为m行m列 。

9)利用初等变换求矩阵的逆:该结论仅适用于可逆方阵

        (1)一个已有的结论:任何可逆方阵A都可以通过初等行变换 化简为单位阵,结合上面的内容,可表示为:   E1*E2*E3*..En*A = E .  (即若干的初等方阵左乘可逆方阵,可变为单位阵)

        (2)对上述等式两边 右乘 A^-1【A的逆】得到: E1*E2*E3*...En*A*A^-1 = E*A^-1 

        (3)进一步化简得到  (E1*E2*E3*..En) *E = A^-1  

总结:A-->E 经过的初等变换【E1*E2*E3*En】   作用到E上,则结果为A^-1  即A的逆。表示为:

(A|E)----(E|A^-1) 

        (4)上述方法对比伴随矩阵法的有点:

                         (a)不必判断A是否可逆,如果A化简不成E,则不可逆,·

                          (b)如果A可以化简为E,则可逆,且同时也求出了A^-1 

        (5)         对于AX=B,如果A可逆,则X=(A^-1)B .  而且可以用上面提到的初等变换来求解。即  (A|B)-----> (E|A^-1* B)   注意该等式可从上面的等式推导而来

注意上面均为左乘和行变换,需要右乘的场景,需要改为列变换

【注意其中A必须是方阵,如果A能变化为E,则A可逆】

【解决实际问题的时候最好套用该公式】

2.5 分块矩阵:与其说是一种矩阵,不如说是一种运算,主要用于降低大矩阵的运算复杂度,用的不多,省略。

1) 概念:用若干横竖线条分割矩阵,得到若干小矩阵,称为分块矩阵,

         (1)分块矩阵主要用于维数较高的矩阵以方便计算。

        (2)分块的方法没有限制,各子块的维数没有关系,有的可以是向量,有的可能是矩阵,

2) 分块矩阵的运算,省略,主要用于降低大矩阵的复杂度。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值