1.量化投资概念和发展
量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。具有四大特点:纪律性、系统性、套利思想和概率取胜。
量化投资在海外发展已有几十年的历史,目前全球排名前六位中的五家资管机构,都是依靠计算机技术来开展投资决策。国内从2004年第一支量化基金开始,经历了较大发展,目前已突破1万亿规模。
2.编程语言的选择
量化投资编程语言一般为Matlab/Python/R/Julia/C++等编译语言, Matlab/Python/R的编写方便,C++编译语言的运行速度快,适合做高频交易。对于大部分初学者来说,程序开发占用的时间远远大于程序运行时间,从这个角度来看,C++就不一定是最快的。对于比较好上手的Matlab/Python/R,Matlab是闭源商业软件,而Python和R是免费开源的。量化资源方面,Python在量化投资领域更为主流,资源要比R和Matlab多。所以综上,零基础同学入门量化的语言是Python。
3.量化投资回测数据获取
做量化投资必定需要进行回测,回测就需要历史数据,对于普通的初学者在学习阶段完全可以使用免费的数据库,这里给大家介绍一下开源的量化投研神器AkShare。AkShare基本包含了量化的几乎所有数据需求场景,只需要一个api就可以直接获取想要的数据。
4.量化投资工具选择
我们做量化投资也会用到一些其他工具,这里就给大家推荐一下我们经常用到的pyechart画图库和TA-Lib技术分析库。
①pyechart简介
Echarts是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。pyecharts是一款将python与echarts结合的强大的数据可视化工具。其具有简洁的 API 设计,支持链式调用,并囊括了30+种常见图表,支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab。可轻松集成至 Flask,Django 等主流 Web 框架。此外,Pyecharts拥有详细的文档和示例,帮助开发者更快的上手项目。
②TA-Lib技术分析库
TA-Lib全称“Technical Analysis Library”,即技术分析库,是一个多平台的金融市场分析工具,广泛应用于金融市场数据技术分析。涵盖200多个指标,包括股票、期货交易软件中常用的技术分析指标,如MA(均线)、Bollinger band(布林带)、Stochastic等。对 C/C++, Java, Perl, Python, .NET都有开源API。
5.量化投资策略
掌握了量化投资的基本工具后,接下是就是写出量化投资策略啦,对于初学者来说,可以从已有的经典策略开始学习,随时这些策略已经失效了,但是曾经有效过。在掌握了这些经典策略,可以阅读券商研报、知网论文或者根据自己交易经验编写自己的策略。
①经典策略
经典策略一般都出现较久,在网上都可以搜到免费的代码,例如经典的择时策略有双均线模型、动量反转、布林带等,选股策略主要有因子策略、中小市值轮换等。但是对于初学者来说,直接看代码肯定会存在一定困难。笔者提供了一套量化投资学习资料,视频加源代码更加便于学习。
②券商研报
目前券商都会有金工研究组,他们会发布一些量化投资策略研究报告,大家可以用wind或者慧博进行下载学习。
③量化策略论文
量化投资在国外发展了几十年,有较多的策略沉淀,虽说在国内发展的时间较短,但这两年也经过蓬勃发展,这方面的研究也多起来了。因此,大家可以去知网搜索相关论文进行学习。
综上所述,进行量化投资首先需要学习编程语言,其次获取历史数据,再者进行策略开发,最终进行实盘交易。