2024年3月,特斯拉在北美地区正式推送FSD V12版本,最大卖点是端到端神经网络模型上车。
相较于过往技术路线,端到端技术通过深度学习模型,从原始传感器数据中直接提取信息,简化了过往繁杂的自动驾驶系统架构,在实现感知到控制无缝连接的基础上,极大提升了系统的响应速度和环境适应性。
鉴于端到端方案在复杂城市环境中展现出的高适应性和高可靠性,国内包括华为、小鹏、理想、蔚来、商汤科技、元戎启行等众多主机厂和智能驾驶技术公司纷纷入局,端到端方案迅速成为自动驾驶业内关注的焦点。
一、端到端是什么?
在深度学习中,端到端的英文翻译为“End-to-End(E2E)”,指的是一个AI模型,只要输入原始数据就可以输出最终结果。
在自动驾驶领域,端到端模型将原本感知、预测、规划等多个模型组合的架构,变成了“感知决策一体化”的单模型架构,这意味着通过摄像头、雷达等传感器获取的数据,在单模型架构中直接生成控制车辆的指令,省去了传统系统中多个独立模块之间的复杂信息传递过程。
率先提出端到端方案的是英伟达。2016年,英伟达发布了一篇名为“End to End Learning for Self-Driving Cars”的论文,以CNN搭建了一套端到端自动驾驶方案。
但真正带火端到端并最先将端到端技术方案应用到量产车型上的是特斯拉。而在该方案落地前,特斯拉自动驾驶技术方案历经了多代版本更迭:
2018-2019年特斯拉通过多头结构HydraNets算法解决了自动驾驶目标检测的多任务问题;2020-2021年推出了BEV+Transformer大模型算法,构建俯视角全景图,解决了2D-3D空间转换和感知性能问题;2022年引入占用网络,具备感知一般障碍物的能力