行业洞察 | 2025 年,“标配智驾” 的时代已经到来?

在科技革命的深远影响之下,汽车产业恰处于重大变革的进程之内。由传统燃油汽车朝着电动汽车的转型初现端倪,而智能驾驶技术的蓬勃兴起,着实开启了汽车产业的全新发展篇章。

进入 2025 年,“智能驾驶成为标准配置” 这一趋势备受关注,已成为行业内外部共同聚焦的重要议题。

然而,在探讨这一趋势是否已经到来之前,有必要先深入分析智能驾驶技术背后的核心支撑要素 —— 数据标注。

一、智能驾驶:汽车行业的新战场

1、智能驾驶的发展现状

近年来,智能驾驶领域热闹非凡。各大车企纷纷重金投入,新技术、新功能不断涌现。2025 年农历新年刚过,比亚迪集团董事长兼总裁王传福在比亚迪智能化战略发布会上宣布,比亚迪全系车型搭载 “天神之眼” 高阶智驾,10 万级以上全系标配,10 万以下多数搭载。这一消息瞬间点燃行业对 “智驾平权” 的讨论热情。

长安汽车也于 2025 年 2 月 9 日投身推进全民智驾的行列,发布智能化战略 “北斗天枢 2.0” 计划,携手众多车企及科技企业,共启全民智驾元年,并表示 2025 年后将不再开发非数智车型。小鹏汽车 CEO 何小鹏称,2025 年年中将推出准 L3 能力高阶自驾,2025 年底将推出真 L3 级别软件和硬件冗余能力的自动驾驶。岚图汽车与华为合作,在全系车型上增添华为的乾崑智驾功能和鸿蒙座舱功能。

不仅国内车企动作频频,国际巨头们同样不甘落后。特斯拉作为智能驾驶领域的开拓者,持续优化 Autopilot 和 FSD(Full Self - Driving)系统,并通过软件更新为用户带来新功能与体验。大众、丰田、宝马等国际车企,也都在智能驾驶技术研发上投入大量资源,积极推动智能驾驶技术落地应用,

2、智能驾驶分级

目前,行业依据国际自动机工程师学会(SAE)标准,将自动驾驶分为 L1 - L5 级。L1 至 L2 级为辅助驾驶,车辆主要由驾驶员操控,但具备自适应巡航、自动紧急制动等辅助功能;L3 级及以上为有条件自动驾驶,特定条件下车辆可自动驾驶,驾驶员仍需随时准备接管;L4 级在绝大部分场景下车辆可自动驾驶,无需驾驶员干预,系统能自主判断;L5 级则是完全自动驾驶,无需驾驶员与方向盘。

然而,尽管行业分级标准明确,消费者对智能驾驶的认知仍存模糊之处。车企宣传时往往强调智能驾驶功能强大,易让消费者期望过高;同时,消费者对不同级别智能驾驶功能的实际效果了解不足,导致实际使用中可能过度依赖智能驾驶系统。

二、数据标注:智能驾驶的幕后英雄

1、数据标注在智能驾驶中的关键作用

智能驾驶的实现离不开先进算法与海量数据,数据标注则是连接二者的关键纽带。在有监督的深度学习模式下,未经标注的原始数据多为非结构化数据,像摄像头拍摄的图像、激光雷达获取的点云数据等,机器无法直接识别学习。只有经标注处理,转化为结构化数据并打上标签,如识别出图像中的车辆、行人、交通标志,以及点云数据中物体的位置、形状等信息,才能用于算法训练。

精确的标注数据是构建高质量智能驾驶模型的基石。以自动驾驶汽车在复杂城市道路环境中的行驶场景为例,模型需要学习识别各类交通参与者,精准理解交通规则,并据此做出正确的行驶决策。若数据标注存在偏差,如将行人误标注为车辆,或遗漏对交通标志的标注,模型在训练过程中就会学习到错误信息,进而在实际行驶中可能做出错误决策,严重威胁行车安全。

此外,数据标注的另一关键作用在于确保模型训练过程中能接触到与任务紧密相关的数据,这对模型的准确性和泛化能力有着至关重要的影响。

若标注工作存在缺陷,模型将无法充分挖掘训练数据中的有效信息,导致其难以准确识别各类场景,最终对预测结果产生负面影响。例如,在不同天气条件(晴天、雨天、雪天)下,道路场景和物体特征存在显著差异。若标注数据未能对这些不同天气场景进行准确标注,模型在遇到此类场景时就可能出现识别错误。

2、数据标注的类型与技术手段

智能驾驶领域常见的数据标注类型有计算机视觉、语音工程、自然语言理解、自动驾驶点云等。计算机视觉标注主要针对摄像头采集的图像数据,标注内容包含 2D 框(标注物体位置和边界)、3D 立方体(标注物体三维空间位置和形状)、多边形(更精确勾勒物体轮廓)、关键点(标注物体关键特征点)、语义分割(将图像中每个像素标注为相应类别)等。语音工程标注用于处理语音识别和语音合成相关数据,如将语音转录为文字,标注语音情感、语调等特征。自然语言理解标注涉及文本数据处理,如实体识别(识别文本中的人名、地名、组织机构名等特定实体)、OCR 转写(将图片中的文字识别并转换为可编辑文本)、文本分类(将文本划分到不同类别)等。自动驾驶点云标注主要针对激光雷达采集的点云数据,标注物体位置、形状、类别等信息。

数据标注过程涉及多种技术手段。手动标注是传统方式,标注人员依标注规范人工标注每个数据点,准确性高但效率低、人力成本高且易出错。

随着技术发展,自动标注和半自动标注技术逐渐应用。自动标注利用计算机视觉、机器学习、深度学习等技术自动标注数据,如通过大量数据训练深度学习模型,使其自动识别数据特征并标注每个数据点,大幅提高标注效率、降低人力成本,标注结果更规范准确。半自动标注则借助部分自动化工具标注数据,标注人员在自动化标注基础上检查校对,一定程度减轻人工标注压力、提高效率。

三、“标配智驾” 时代的挑战与机遇

1、技术层面的挑战

尽管智能驾驶技术取得显著进展,要实现 “标配智驾” 仍面临诸多技术难题。首先,智能驾驶系统需具备高度可靠性和安全性。复杂多变的交通环境中,任何技术故障都可能引发严重后果。传感器故障可能致智能驾驶系统无法准确感知周围环境,算法错误可能使车辆做出错误行驶决策。因此,提升智能驾驶系统的可靠性和安全性迫在眉睫。

其次,不同场景下的智能驾驶技术有待完善。常见场景如高速公路、简单城市道路,智能驾驶系统性能表现良好,但在极端天气(暴雨、暴雪、大雾)、复杂路况(道路施工、事故现场)、特殊交通规则地区等特殊场景下,表现仍不尽人意。这需进一步优化算法,增强智能驾驶系统对复杂场景的适应性和应对能力。

此外,智能驾驶系统的计算资源需求也是挑战。智能驾驶功能日益丰富复杂,对计算能力要求渐高。如何在有限硬件资源下实现高效计算和数据处理,不仅关乎硬件技术提升,还需在算法优化、数据处理架构设计等方面创新。

2、数据标注面临的新挑战

随着 “标配智驾” 时代渐近,数据标注面临新需求与挑战。一方面,智能驾驶功能普及使标注数据需求量大增。更多车企将智能驾驶功能作为标配,意味着需海量标注数据训练和优化智能驾驶模型。且智能驾驶技术向更高等级发展,对标注数据质量和多样性要求更高。例如,L3 及以上级别的智能驾驶,需要更精确全面的标注数据,涵盖复杂场景详细标注、车辆行驶意图和行为准确标注等。

另一方面,数据标注复杂度不断攀升。智能驾驶场景多样复杂,大幅增加标注难度。复杂城市交通场景中,不仅要标注交通参与者的位置、类别和行为,还要标注它们之间的相互关系和潜在风险因素。随着多模态数据融合技术在智能驾驶中的应用,数据标注需同时处理摄像头、激光雷达、毫米波雷达等多种传感器的数据,进一步加大标注复杂性。

同时,数据安全问题日益突出。标注数据包含大量敏感信息,如车辆行驶轨迹、驾驶员行为数据等,一旦泄露,将严重威胁用户隐私和安全。因此,保障数据标注过程中的数据安全,是数据标注企业面临的重要挑战。

3、国内企业的破局之路

面对重重挑战,国内数据标注行业并未却步。一批优秀企业凭借卓越的技术实力、丰富的实践经验与敏锐的市场洞察力,积极探索破局之法。它们深入研发先进的标注技术与工具,强化数据安全管理体系,不断提升服务质量与效率,展现出强大的韧性与创新活力。其中,杭州曼孚科技有限公司表现尤为亮眼,在智能驾驶数据标注领域树立了卓越典范,以专业能力有力回应了行业需求,为 “标配智驾” 时代的推进注入强劲动力 。

四、曼孚科技:数据标注领域的佼佼者

杭州曼孚科技有限公司成立于 2018 年 11 月 16 日,长期专注于智能化数据中台及数据应用服务。在智能驾驶数据标注领域积累深厚,为众多自动驾驶客户提供高质量服务。

曼孚科技拥有专业团队,核心成员包括人工智能领域专家学者,以及来自谷歌、阿里、网易等科技企业的人才,技术功底深厚、行业经验丰富,能为客户提供专业解决方案。

技术层面,曼孚科技旗下有一系列先进数据处理平台。SAAS 级数据处理平台提供高效数据标注服务,支持多种标注类型和方式,满足不同客户需求。目前,曼孚科技旗下主要产品包括一体化DaaS数据标注平台、数据管理平台(含向量数据库)、AutoLabeling平台、模型训练平台以及大模型标注平台等,提供从基础数据服务(数据采集、数据标注)到大模型算法应用的端到端解决方案,并已构建起较深技术壁垒。

以现阶段核心产品MindFlowSEED数据标注平台为例,其在工具层面更完善、更新迭代周期更短、对标注员更为友好,目前可提供5000+以上不同种类的功能。例如,处理自动驾驶点云数据标注时,曼孚科技平台借助先进算法和工具,能快速准确识别点云数据中的物体并标注。同时,通过标注数据质量监控和分析,及时发现纠正标注问题,确保数据准确一致。

此外,通过采用预训练大模型的AI预标注算法搭配RPA自动化,MindFlowSEED平台可实现数据的高效处理与无上限规模化量产。

多年来,曼孚科技与众多知名自动驾驶企业建立长期合作,为其提供大量高质量数据标注服务,助力客户在智能驾驶技术研发上成果显著。以某知名自动驾驶企业为例,该企业研发面向未来城市交通的自动驾驶系统时,遭遇复杂场景数据标注难题。城市交通场景包含大量行人、车辆、交通标志和信号灯,且不同场景特征变化多端,传统数据标注方式难以满足对数据质量和效率的要求。曼孚科技深入了解客户需求,运用先进数据标注平台和专业团队,为客户定制全面的数据标注解决方案。

项目实施中,曼孚科技标注团队针对不同场景数据采用不同标注策略和技术手段。复杂交通路口场景,结合 3D 点云标注和语义分割标注,精准标注每个物体的位置、形状和类别;动态车辆行驶场景,通过关键点标注和轨迹标注,精确记录车辆行驶轨迹和行为特征。同时,利用曼孚科技的数据质量监控系统实时监测评估标注数据,及时发现纠正标注错误,确保数据质量符合客户严格要求。

经曼孚科技团队努力,项目按时交付高质量标注数据,为客户自动驾驶系统研发提供有力支撑。客户基于这些标注数据进行算法训练和模型优化,自动驾驶系统在复杂城市交通场景下的识别准确率和决策可靠性大幅提升,为产品商业化落地筑牢根基。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值