自动驾驶核心三要素由“感知”、“决策”与“执行”构成。
其中感知系统是自动驾驶技术中的关键组成部分,其主要任务是通过多传感器与算法对周围环境进行精确感知与理解,相当于人的眼睛。
早期自动驾驶感知技术多基于2D感知,即2D图像数据。通过在图像中标注车辆、行人、交通标志等目标,输出图像空间中的检测和分割结果。
由于2D感知无法提供距离和深度信息,且无法反映场景的真实结构,导致系统在某些复杂环境下的表现不尽如人意,因此包含更多信息内容的3D点云数据应运而生。
3D点云数据是通过一定的测量手段直接或间接采集的,且符合测量规则能够刻画目标表面特性的密集点集合,是继矢量、影像后的第三类空间数据,为刻画三维现实世界提供了最直接和有效的表达方式。
然而,自动驾驶车辆在实际行驶过程中,周围环境往往是具有时序的,3D数据仅提供了静态的空间信息,无法反映动态变化,因此包含时序内容的4D标注开始出现,并得到大范围应用。
4D标注概念与优势
简单来说,4D标注即是在3D的基础上加入时序信息,形成一个四维的标注系统,为感知提供真值数据。
4D标注不仅标注3D空间中的静态目标,还标注了具有时序信息的动态目标。这种方式既可以记录物体在时间轴上的运动和变化,也可以更全面地描述物体的运动轨迹、形态变化以及与环境之间的互动关系。
相较于2D以及3D标注,4D标注具备如下优势:
-
4D标注可以准确呈现物体的动态运动轨迹&#