知识图谱上的规则归纳与推理
1. 归纳推理任务
非单调逻辑程序的答案集语义基于封闭世界假设(CWA),在该假设下,程序中无法推导的内容都被假定为假。非单调逻辑程序广泛应用于对不完整信息进行常识性演绎推理。
自动规则归纳是一个重要的研究领域,通常被称为规则学习,它是机器学习的一个重要子领域,专注于使用符号方法进行智能数据分析,通过特定的描述语言来表示学习到的知识。
一阶学习方法也被称为归纳逻辑编程(ILP),其目标是在背景知识的基础上,通过构建关于未知实例的假设,对个体实例或观察结果进行泛化。ILP中最常见的任务是学习关系的逻辑定义。
经典的从正例和反例进行归纳学习(也称为从蕴含关系学习)的定义如下:
- 给定条件 :
- 目标n元关系p的正例E⁺和反例E⁻,即事实集合。
- 背景知识T,即关于各种关系的事实集合,可能包含用于推导p定义的规则。
- 对p定义的语法限制。
- 寻找内容 :
- 定义目标关系p的假设Hyp,它需要满足:
- 完整性,即对于所有e ∈ E⁺,有T ∪ Hyp |= e。
- 一致性,即对于所有e′ ∈ E⁻,有T ∪ Hyp ̸|= e′。
例如,已知一些家庭成员之间的关系和他们的性别信息,但不知道“fatherOf”关系的具体含义。背景知识T如下:
T = {
(1) parentOf (john, mary);
(2) male(john);
超级会员免费看
订阅专栏 解锁全文
1049

被折叠的 条评论
为什么被折叠?



