机器学习第六天:deep learning introduction

 

 

深度学习的三步:

第一步:神经网络

第二步:函数好处

第三步:选择最好的函数

不同的连接导致不同的网络结构

最常用的连接:完全连接前馈网络

有输入有输出就是一个函数

给定网络结构,定义function set

layer1的output就是layer2的input

deep要有很多层的layer

使用并行计算技术加速矩阵运算

可以用GPU加速

output layer之前可以看作feature extractor

output layer可以看作multi-class classifier,用softmax方式

涂颜色的是1,无颜色的是0

每个维度代表一个数字的置信度。

可以拿来做手写数字识别的function set,但有的好有的坏,从中选一个最好的

有多少的layer,就决定function set长的样子

您需要决定网络结构,以便在功能集中实现良好的功能。

做deep learning不需要好的feature,需要实验、错误和直觉

在function set中找一个function,或者找一组parameters可以minimize total loss L

minimize total loss L的方法就是gradient descent

alpha go用的就是gradient descent

backpropagation反向传播是计算微分的有效方式

越多的参数,表现得越好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值