深度学习的三步:
第一步:神经网络
第二步:函数好处
第三步:选择最好的函数
不同的连接导致不同的网络结构
最常用的连接:完全连接前馈网络
有输入有输出就是一个函数
给定网络结构,定义function set
layer1的output就是layer2的input
deep要有很多层的layer
使用并行计算技术加速矩阵运算
可以用GPU加速
output layer之前可以看作feature extractor
output layer可以看作multi-class classifier,用softmax方式
涂颜色的是1,无颜色的是0
每个维度代表一个数字的置信度。
可以拿来做手写数字识别的function set,但有的好有的坏,从中选一个最好的
有多少的layer,就决定function set长的样子
您需要决定网络结构,以便在功能集中实现良好的功能。
做deep learning不需要好的feature,需要实验、错误和直觉
在function set中找一个function,或者找一组parameters可以minimize total loss L
minimize total loss L的方法就是gradient descent
alpha go用的就是gradient descent
backpropagation反向传播是计算微分的有效方式
越多的参数,表现得越好