Alias method:时间复杂度O(1)的离散采样方法

本文介绍了离散分布的概念和采样算法,重点讲解了时间复杂度为O(1)的Alias方法。该方法通过构建特殊表格,将概率分布转化为1*N的矩形,实现高效采样。文章提供了算法的可行性证明及代码示例,并进行了时间效率对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在看图算法相关的东西,先介绍一个用于其中的采样算法吧(超小声的说一句,我打算以后把看过的算法都实现一遍,提高一下工程能力)。

1. 什么叫离散分布

首先,离散分布:给你一个概率分布,是离散的,比如[1/2, 1/3, 1/12, 1/12],代表某个变量属于事件A的概率为1/2, 属于事件B的概率为1/3,属于事件C的概率为1/12,属于事件D的概率为1/12。

2. 时间复杂度为o(N)的采样算法

首先将其概率分布按其概率对应到线段上,像下图这样:

接着产生0~1之间的一个随机数,然后看起对应到线段的的哪一段,就产生一个采样事件。比如落在0~ 1/2之间就是事件A,落在1/2~5/6之间就是事件B,落在5/6~11/12之间就是事件C,落在11/12~1之间就是事件D。 
构建线段的时间复杂度为o(N),如果顺序查找线段的话,查找时间复杂度为o(N),如果二分查找的话,查找的时间复杂度为O(logN)。

3. 时间复杂度O(1)的采样算法——alias

alias分为两步:

1. 做表:

将概率分布的每个概率乘上N,画出柱状图。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值