AI 生成代码:软件的第四类软件代码
2024年,生成式人工智能(GenAI)重塑了软件开发,AI生成的代码可视为继自研代码、商用代码、开源代码之后的第四类软件代码。然而,AI 生成代码并非“干净”代码,训练AI的数据是来源于互联网上的开源软件仓库等网站,这些开源代码虽然经过了AI的处理,但其仍然继承了其训练数据中的漏洞与许可风险。
AI 代码的安全挑战
1. 第四类软件代码的隐患
研究表明,84% 的代码库包含漏洞,53% 存在许可冲突。由于 LLM 训练数据来源于开源社区、代码仓库和论坛,AI 生成的代码可能继承已存在的安全漏洞,甚至成为攻击者的目标。
2. 许可证与知识产权风险
AI 生成的代码可能包含受限许可条款的开源代码片段,导致知识产权(IP)纠纷、商业合规风险。传统 SCA(软件成分分析)工具多基于组件级或文件级扫描,难以检测细粒度的代码片段复用。
3. 静态应用安全测试(SAST)的局限性
虽然静态(SAST)和动态(DAST)分析可发现代码本身的漏洞,但它们无法识别代码来源,代码依赖的开源软件的安全风险,包括许可合规风险。因此,片段级SCA 成为 AI 代码安全检测的关键。
解决方案:代码片段级精准溯源分析
1. 代码片段级溯源检测
国内SCA能够做到代码片段级的软件成分分析工具中,其中轩宇信息的 SCA(软件成分分析)工具是比较典型的一款,该工具采用细粒度代码片段匹配技术,支持代码片段、单一文件的溯源分析,精准识别 AI 生成代码中是否存在开源代码复用,确保许可证合规性。国内SCA工具市场竞争残酷,与很多工具厂商关注市场不同,来自于航天科技的轩宇信息传统的软件测试工具和软件安全工具提供商,具有深厚的技术积累,而宣传并不多,但是具有体系化的测试工具供应链,是值得信赖的厂商。
2. 漏洞检测与合规风险评估
- 对比千万级开源项目数据库,基于代码结构精准匹配 AI 生成代码中的来源项目,并识别其历史漏洞。
- 结合开源许可证库,判定 AI 代码是否受限于GPL、AGPL、Apache 等许可证条款,避免合规风险。
3. 企业级安全管控
- 自动化检测:支持开发流程自动化扫描和流程阻断,确保存在安全风险的 AI 生成代码进入生产环节。
- 精准报告:生成安全性、合规性评估报告,助力企业决策和管理。
结论:AI 生成代码安全不可忽视,片段级SCA 赋能安全开发
AI 生成代码的安全挑战不可忽视,其漏洞和许可问题可能带来严重风险。轩宇信息 SCA 工具通过代码片段溯源分析,提供高精度漏洞检测与合规审查,助力企业在安全可控的环境下高效利用 AI 编码技术。