本文由清华大学计算机科学与技术系于2021年12月22日发表于IEEE Transactions on Neural Systems andRehabilitation Engineering期刊,标题为:“Filter Bank Convolutional Neural Network for ShortTime-Window Steady-State Visual Evoked Potential Classification”,作者提出了提出了一种基于时域的CNN方法(tCNN),以时域信号作为网络输入。并进一步提出了滤波器组-tCNN(FB-tCNN),以提高其在短时窗内的性能。
在0.2 s时窗下,在作者自己的数据集和公开数据集的两个会话的个体内测试准确率分别达到了88.36±4.89%、77.78±2.16%和79.21±1.80%。
1. 引言
人们提出了不同的方法应用于SSVEP-EEG的识别。其中典型相关分析(CCA)是众多传统方法中的一种比较典型的方法,它通过确定采集的数据与刺激目标信号模板之间的相关性来识别SSVEP。但CCA方法存在短时窗识别准确率不高的缺陷。魏等人提出一种数据驱动的CCA方法(CCA-M3)提高了在短时窗下的SSVEP-EEG的识别准确率。但CCA-M3存在时窗对齐问题,较难实现异步脑机接口。
近些年来已经有研究者尝试将CNN应用于SSVEP-EEG识别。部分研究者设计的网络构架需要以快速傅里叶变换(FFT)后的频域特征作为网络构架的输入。这种思路确实很好的利用了SSVEP信号的频域特征,但忽略了时域信号中的相位信息。且在短时窗下,频域特征变得不明显。这类算法的识别效果在短时窗下表现不佳。Waytowich等人提出了以时域信号为输入的Compact-CNN,但其网络结构较为复杂。