45、上海大学:轻量级多特征神经网络M-FANet,用于MI-BCI解码

本文由上海大学机电工程与自动化学院于2024.1.9日发表于IEEE Transactions on Neural Systems and Rehabilitation Engineering(SCI中科院分区二区,IF:4.9)

论文链接:M-FANet: Multi-Feature Attention Convolutional Neural Network for Motor Imagery Decoding | IEEE Journals & Magazine | IEEE Xplore

研究背景:

运动意象(MI)解码方法是推进康复和运动控制研究的关键。基于脑机接口(BCI)的有限低信噪比脑电图(EEG)信号样本中频谱-时空特征的有效提取是MI解码的关键。本文提出了一种轻量级的多特征注意神经网络(M-FANet),用于特征提取和多特征数据的选择。M-FANet采用几个独特的关注模块来消除频域冗余信息,增强局部空间特征提取和校准特征映射。引入正则化Dropout (R-Drop)训练方法来解决Dropout导致的训练-推理不一致问题,提高模型的泛化能力。我们在BCI竞赛IV 2a (bbic -IV-2a)数据集和2019年世界机器人大会竞赛-BCI机器人竞赛MI (wbbic -MI)数据集上进行了广泛的实验。M-FANet在bbic - iv -2a数据集上的4类分类准确率为79.28% (kappa: 0.7259),在wbbic -MI数据集上的3类分类准确率为77.86% (kappa: 0.6650),与现有的MI解码方法相比,M-FANet的性能更为优越。多特征关注模块和R-Drop在轻量化模型中的应用显著提高了其性能,并通过综合烧蚀实验和可视化验证了这一点。因此,本研究提出了Multi-Feature Attention Convolutional Neural Network(M-FANet)旨在提升MI的解码性能。

Model:

M-FANet设计了从频率、局部空间、特征图三个角度校准EEG相关信息的注意力模块。

本文的贡献总结如下:

•提出一种轻量级的多特征注意神经网络(M-FANet),该网络通过从EEG信号中提取更广泛的特征,并使用多个注意模块来有效地利用它们来增强MI任务的分类性能。

•引入R-Drop作为一种模型训练方法来缓解过度拟合。

•使用BCI Competition IV 2a(BCIC-IV-2a)四类任务数据集和2019世界机器人大会竞赛-BCI机器人竞赛MI(WBCIC-MI)三类任务数据集进行实验,以评估所提出的M-FANet与最先进的MI解码方法的有效性和优越性。此外,还深入研究了R-Drop引入的正则化项对网络性能的影响。

模型结构:

在最先看到本文模型图之后,我就确认该模型是在EEGNet稳定的3个block基础上改进的,再看论文中所讲,果不其然:

0、Bandpass Filtering:

原始EEG样本X∈R **C×T,其中C为EEG通道数,T为时间点。使用Chebyshev Type II滤波器对原始EEG数据实现多个带通滤波器,其阻带纹波为-30dB,固定步长为L(此处设置为4Hz)。

1、Frequency Band Attention Module:

在MI的机器学习算法中,带通滤波器参数对解码结果有显著影响,这表明频域虽然充满了有价值的信息,但很难准确地提取出来。为了捕获频域内的相关信息,设计了基于注意机制的频带注意模块,实现了自适应频率滤波,来接受步骤0输出的带通频率数据

2、 Local Spatial Attention Module: 

根据神经科学对心肌梗死的先验知识,我们知道心肌梗死主要激活与运动相关的大脑区域,尤其是靠近电极C3, Cz和C4的区域。因此,在提取空间维度的特征时,不应将通道视为平等的,而应将重点放在与MI相关的领域。设计了局部空间注意模块,从局部电极群中提取有效的空间信息。局部空间卷积核大小(Ks,1),也就是因为该团队接了国自然项目,要搞心肌梗死的识别,这里先不完全使用全部的空间信息,只使用局部的相应的通道中的与心肌梗死有关的特征。

3、Temporal spatial convolution:

后接时空卷积,Conv2d+BN+深度卷积,提取时间、空间信息(融合了EEGNet的block1+block2

4、 Feature Map Attention Module:

一个SENet块,SENet是在通道域中加⼊Attention最早的模型,我之前博客有讲的,这里不多说

5、SeparableConv2D:

最后使用深度可分离卷积对以上提取的各级别特征解码(EEGNet的bkock3原封不动

6、Classification

结语:

在我看来本模型是EEGNet+SENet+CSP-Bandpass Filtering的融合,学习EEGNet并对其改进,还是大有可为的,至少发个SCI3、4区的不是问题。

  • 12
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: mi-bci是一种通过大脑信号实现人机交互的技术,它能够识别并分类人脑中的特定动作意图。运动想象分类就是将mi-bci用于分类运动想象任务。下面是使用MATLAB编写的运动想象分类CNN-SAE程序。 首先,我们需要导入所需的MATLAB包和库。我们使用MATLAB的Deep Learning Toolbox功能来构建卷积神经网络CNN)和稀疏自编码器(SAE)模型。导入数据集和标签集,包括训练集和测试集。 然后,我们需要对数据进行预处理。首先,我们将数据分为训练集和测试集,并将其归一化到0到1的范围内。接下来,我们将数据转换为适合卷积神经网络的形状。 创建CNN模型。我们使用卷积层、池化层和全连接层来构建CNN模型。对于卷积层,我们选择适当的卷积核大小和步幅来提取关键特征。池化层用于减小特征图的大小,并保持特征的一些不变性。全连接层用于分类任务。 进行训练和优化。我们使用训练集来训练CNN模型,并通过反向传播算法更新模型的权重和偏差。我们使用交叉熵损失函数和随机梯度下降算法来优化模型。 创建SAE模型。在CNN模型之后,我们使用稀疏自编码器来进一步提取特征。稀疏自编码器是一种无监督学习算法,它可以通过最小化重构误差来学习数据的低维表示。 最后,我们使用测试集来评估模型的性能。我们将模型的输出与真实标签进行比较,并计算分类准确率、精确度、召回率等指标。 总结而言,这是一个用于mi-bci分类的CNN-SAE程序。它通过训练卷积神经网络和稀疏自编码器来实现对运动想象任务的分类。通过该程序,我们可以有效地识别和分类运动想象任务,为mi-bci技术的应用提供了一种可行的方法。 ### 回答2: mi-bci是一种通过监测大脑运动想象来实现的脑机接口技术。在此问题中,我们需要用Matlab编写一个用于mi-bci分类的CNN-SAE(卷积神经网络稀疏自编码器)程序。 首先,我们需要导入所需的Matlab库和数据集。可以使用MATLAB中的`import`命令来导入相应的库函数和数据。 接下来,我们需要准备数据集。mi-bci数据集通常包含一系列带有分类标签的EEG(脑电图)数据,每个数据样本对应于被试者在不同想象动作下的大脑活动。我们需要将数据集划分为训练集和测试集,用于训练和评估CNN-SAE模型的性能。 然后,我们构建CNN-SAE模型。这个模型由多个卷积层、池化层和全连接层组成。每个层都有相应的参数,如滤波器大小、步长等。通过逐层设置这些参数,我们可以构建一个适合mi-bci分类任务的模型。 接下来,我们需要在训练集上训练CNN-SAE模型。训练过程通常包括多次迭代,每次迭代都会调整模型的权重和偏置,以最小化损失函数。使用训练数据,我们可以逐渐提高模型的准确性。 最后,我们可以使用测试集来评估模型的性能。将测试数据输入已经训练好的模型中,通过比较预测结果和真实标签,我们可以得到模型的准确率、精确度、召回率等性能指标。 在编写这个程序时,我们需要合理设置超参数,如学习率、迭代次数、卷积核个数等。这些超参数的选择会影响模型的性能和收敛速度。 综上所述,编写一个用于mi-bci分类的CNN-SAE程序,需要导入库函数和数据集、准备数据、构建模型、训练模型,并评估模型的性能。这只是一个大致的步骤,具体实现过程需要根据具体的mi-bci分类任务和数据集来确定。 ### 回答3: 运动想象分类是一种基于脑机接口技术的运动想象实验,通过分析被试者的大脑活动模式,将不同的运动想象分类成具体的动作类别。为了实现这个目标,可以使用一种叫做深度学习机器学习方法中的卷积神经网络CNN)。 MATLAB是一种常用的科学计算软件,也提供了深度学习工具箱,方便我们编写和运行深度学习的代码。以下是一种用于运动想象分类的CNN-SAE(卷积神经网络-稀疏自编码器)的MATLAB代码: 1. 数据预处理: - 读取运动想象实验的脑电信号数据和相应的标签数据,其中标签表示被试者想象的运动类型。 - 对脑电信号数据进行预处理,如滤波去噪、时域/频域特征提取等。 2. 数据划分: - 将脑电信号数据划分成训练集、验证集和测试集,一般采用交叉验证的方法。 3. 构建CNN网络: - 设计CNN网络的结构,包括卷积层、池化层、全连接层等。 - 设置相应的参数,如卷积核大小、卷积步长、池化窗口大小等。 4. 特征学习: - 使用训练集的数据和标签进行网络训练,使网络学习到适合运动想象分类的特征表示。 - 采用稀疏自编码器(SAE)作为中间层,增强特征表示的能力。 5. 分类: - 使用训练好的CNN-SAE模型对测试集进行分类。 - 计算分类精度和其他评价指标。 通过以上步骤,就可以使用MATLAB编写出运动想象分类的CNN-SAE程序。这个程序可以用于训练和分类运动想象实验的脑电信号数据,帮助我们分析和理解大脑活动模式,并实现准确的运动想象分类。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是馒头阿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值