halcon之共线连接union_collinear_contours_xld

本文介绍了一个用于处理断裂但共线的轮廓线的算法——union_collinear_contours_xld。该算法能够有效地将断裂的轮廓线合并成连续的整体,适用于边缘检测后因噪声或物体本身原因导致的断裂情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

union_collinear_contours_xld

很多时候当我们用 edges_sub_pixthreshold_sub_pix  等算子得到边缘后,因为有噪声、物体本身断裂等原因 很多边缘是共线但是断裂的
如下图所示,提取键盘的网格,左图有很多共线线段,右图为共线连接后的结果

更详细信息可查阅自带例程: measure_grid.hdev


一个更直观的例子提取网格,左图因为网格有交叉点通过 edges_sub_pix得到是断裂的网格线,右图为 union_collinear_contours_xld的结果



union_collinear_contours_xld参数详解:

MaxDistAbs:   沿参考回归线方向轮廓端点的最大距离。等于 临近的端点在第一条回归线上的投影距离。



MaxDistRel:轮廓端点距离相对于沿参考回归线方向相对于被延长的轮廓的长度的值



MaxShift:轮廓到参考回归线的最大距离(垂直距离),这个参数决定,即使两个轮廓处于平行,也会合并


MaxAngle: 两个轮廓的最大角度差,弧度制


Mode:  比如,edges_sub_pix附着于每个轮廓点一些属性:角度、边缘方向等可参考 get_contour_attrib_xld。
选择默认值'attr_keep',所有的属性都会考虑, 如果输入轮廓过多,可能就会影响性能,尤其是接下来用不到这些属性。这时,使用'attr_forget'比较好。

NOTCE: 共线轮廓不能和其它轮廓有较大重叠度。最大重叠度为0.5像素。
如果想要合并重叠轮廓就用Unoin_collinear_contours_ext_xld,这是本算子的一个扩展算子。
<think>好的,用户想用Halcon实现断裂线条的拟合。首先需要了解Halcon的相关功能模块。根据引用[3],Halcon的亚像素处理涉及边缘检测和滤波,这可能对断裂线条的识别有帮助。 第一步可能是图像预处理。引用[2]提到,Halcon的Region和XLD结构适合处理区域和轮廓。使用阈值分割或边缘检测提取线条区域,比如使用threshold或edges_sub_pix。例如,edges_sub_pix可以提取亚像素精度的边缘,这对后续拟合很重要。 如果线条断裂,可能需要连接断点。引用[1]中的CompleteJunctions参数可能相关,但用户需要具体操作。可能需要形态学处理,比如dilation连接断裂部分,或者使用shape_trans转换区域形状。 接下来,将区域转换为XLD轮廓。使用gen_contour_region_xld将Region转为XLD,然后进行拟合。如果线条不连续,可能需要合并接近的XLD轮廓,使用concat_obj或union_collinear_contours_xld。 然后,使用亚像素级别的拟合算法,如fit_line_contour_xld拟合直线,或fit_circle_contour_xld拟合圆弧。这些函数能处理XLD轮廓并返回几何参数。 最后,验证拟合效果,可能需要计算拟合误差或可视化检查。确保处理后的线条连续且符合实际需求。 可能遇到的问题包括噪声干扰导致断裂过多,或线条交叉导致错误连接。需要调整预处理参数或使用更复杂的连接算法。</think>要使用Halcon实现断裂线条的拟合,可按照以下步骤操作: ### 一、图像预处理与边缘提取 1. **读取图像并增强对比度** 使用`read_image`加载图像,通过`emphasize`或`scale_image`增强线条与背景的对比度 2. **亚像素边缘检测** 采用`edges_sub_pix`算子提取亚像素级边缘,参数建议: - 滤波器选择"canny"(抗噪能力强) - 低阈值设置为自动计算:'auto_high'[^3] ```cpp edges_sub_pix(Image, Edges, 'canny', 1.5, 20, 40) ``` ### 二、断裂线条连接 1. **轮廓分段处理** 使用`segment_contours_xld`将长轮廓分割为直线段,参数设置: ```cpp segment_contours_xld(Edges, ContoursSplit, 'lines', 5, 4, 2) ``` 2. **几何关系分析** - 计算相邻线段的端点距离`distance_cc` - 判断线段夹角`angle_lx` ```cpp distance_cc(EndRow1, EndCol1, StartRow2, StartCol2, Distance) angle_lx(LineStartRow, LineStartCol, LineEndRow, LineEndCol, Angle) ``` 3. **动态连接策略** 设定阈值(建议值): ```cpp if(Distance < 10 && abs(AngleDiff) < 0.35) // 约20度 union_collinear_contours_xld(...) ``` ### 三、亚像素级拟合 1. **直线拟合** 使用`fit_line_contour_xld`实现精确拟合: ```cpp fit_line_contour_xld(Contours, 'tukey', -1, 0, 5, 2, RowBegin, ColBegin, RowEnd, ColEnd, Nr, Nc, Dist) ``` - 'tukey'方法对离群点鲁棒 - 迭代次数建议5次 2. **曲线拟合(可选)** 对于弯曲断裂线,使用`fit_contour_xld_ransac`: ```cpp fit_contour_xld_ransac(Contours, 'circle', 100, 2, 0.5, 3, 100, Param, ParamCov) ``` ### 四、结果验证 1. **可视化检查** 使用`dev_display`叠加显示原始轮廓与拟合结果 2. **量化评估** 计算平均拟合误差: $$ \text{Error} = \frac{1}{N}\sum_{i=1}^{N}D_i^2 $$ 其中$D_i$是点到拟合线的距离 ### 五、完整代码示例 ```cpp read_image(Image, 'broken_lines') emphasize(Image, ImageEmphasize, 7, 7, 1.5) edges_sub_pix(ImageEmphasize, Edges, 'canny', 1, 20, 40) segment_contours_xld(Edges, ContoursSplit, 'lines', 5, 4, 2) connection_radius := 10 max_angle_diff := 0.35 union_collinear_contours_xld(ContoursSplit, ConnectedContours, connection_radius, max_angle_diff, 0.5) fit_line_contour_xld(ConnectedContours, 'tukey', -1, 0, 5, 2, Row1, Col1, Row2, Col2, Nr, Nc, Dist) gen_contour_polygon_xld(Contour, [Row1, Row2], [Col1, Col2]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值