在进行图像的数据处理之前我们先搞懂epoch、iteration和batch_size三者的关系
epoch:所有训练样本都送入到模型中称为一个eopch
iteration:一批样本输入到模型中,称之为一个iteration
batch_size:批大小,决定了一个epoch有多少个iteration
假设样本总数80 batch_size:8
则1epoch = 10iteration
下面先简单讲解一下思路
1.首先将图片进行训练集、验证集和测试集划分
2.接下来因为是使用pytorch的Dataloader类进行数据处理,因此我们要实现Dataset类,这个类需要自己实现
3.写完Dataset类可以用它来构建Dataloader类,用Dataloader类进行数据批处理,在进行数据批处理之前可以使用transforms对图像进行图像增强
首先先介绍未处理数据的文件存储结构.hello pytorch为项目的根路径
图像标签为1的存储路径:hello pytorch/data/RMB_data/1 #文件夹1下存放的是标签为1的图片 数量100张
图像标签为100的存储路径:hello pytorch/data/RMB_data/100 # 文件夹100下存放的是标签为100的图片 数量100张
划分训练集、验证集和测试集代码
import os
import random
import shutil
def makedir(new_dir): # 如果new_dir文件夹不存在则创造此文件夹
if not os.path.exists(new_dir):
os.makedirs(new_dir)
dataset_dir = os.path.join("..", "..", "data", "RMB_data") # F:\pythonProject\hello pytorch\data\RMB_data
split_dir = os.path.join("..", "..", "data", "rmb_split") # 为划分的数据集准备的文件夹,此时还没有创建
train_dir = os.path.join(split_dir, "train") # 为训练集准备的文件夹,此时还没有创建
valid_dir = os.path.join(split_dir, "valid") # 为验证集创建的文件夹,此时还没有创建
test_dir = os.path.join(split_dir, "test") # 为测试集创造的文件夹,此时还没有创建
# 为测试集、训练集和验证集划分比例
train_pct = 0.8
valid_pct = 0.1
test_pct = 0.1
for root, dirs, files in os.walk(dataset_dir):
for sub_dir in dirs: # 1
imgs = os.listdir(os.path.join