# -*- coding: utf-8 -*-
import os
import random
import shutil
#功能:创建文件夹
#传入参数:被创建文件夹的名字
def makedir(new_dir):
if not os.path.exists(new_dir):
os.makedirs(new_dir)
if __name__ == '__main__':
random.seed(1)#设置随机数种子,用来和示例程序的代码生成的结果保持一致
#拼接各种指点的路径
dataset_dir = os.path.join("..", "..", "data", "RMB_data")
split_dir = os.path.join("..", "..", "data", "rmb_split")
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")
test_dir = os.path.join(split_dir, "test")
#划分训练验证测试的比例
train_pct = 0.8
valid_pct = 0.1
test_pct = 0.1
for root, dirs, files in os.walk(dataset_dir):
for sub_dir in dirs:
imgs = os.listdir(os.path.join(root, sub_dir))
#这里的filter是用来过滤List中的元素的,lambda用来设置条件,
imgs = list(filter(lambda x: x.endswith('.jpg'), imgs))
#吧获取到的图片打乱
random.shuffle(imgs)
#记录图片的数量
img_count = len(imgs)
#划分点,80%的数据给训练,剩下的分别等分给验证和测试
train_point = int(img_count * train_pct)
valid_point = int(img_count * (train_pct + valid_pct))
#在所有的图片中,划分数据集
for i in range(img_count):
if i < train_point:
out_dir = os.path.join(train_dir, sub_dir)
elif i < valid_point:
out_dir = os.path.join(valid_dir, sub_dir)
else:
out_dir = os.path.join(test_dir, sub_dir)
makedir(out_dir)#创建上述的文件夹
target_path = os.path.join(out_dir, imgs[i])
src_path = os.path.join(dataset_dir, sub_dir, imgs[i])
#拷贝原来文件夹中的图片放到新的需要划分的文件夹中
shutil.copy(src_path, target_path)
#处理的打印信息
print('Class:{}, train:{}, valid:{}, test:{}'.format(sub_dir, train_point, valid_point-train_point,
img_count-valid_point))
【代码学习】——简单二分类数据集划分代码学习
最新推荐文章于 2025-03-29 15:46:51 发布