加载自己的数据集训练,以VGG和LeNet为例,自己做的笔记,避免忘记

数据集为imagenet的格式,分为训练和验证两个文件夹,训练文件的子文件夹的名字代表具体的类别。

——ImageNet
  ——train
  	——cls1
  		——cls1_00.jpg
  		——cls1_01.jpg
  		...
  		——cls1_59.jpg
  	——cls2
  	——clsn
  ——test
  	——cls1
  		——cls1_60.jpg
  		——cls1_61.jpg
  		...
  		——cls1_100.jpg
  	——cls2
  	——clsn
import os
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from torch import nn
import torch.optim as optim
from torchvision import transforms, models
import torch

class VGGNet(nn.Module):
    def __init__(self, num_classes=2):
        super(VGGNet, self).__init__()
        net = models.vgg16(pretrained=True)
        net.classifier = nn.Sequential()
        self.features = net
        self.classifier = nn.Sequential(
                nn.Linear(512 * 7 * 7, 512),
                nn.ReLU(True),
                nn.Dropout(),
                nn.Linear(512, 128),
                nn.ReLU(True),
                nn.Dropout(),
                nn.Linear(128, num_classes),
        )

    def forward(self, x):
        print("x.shape =" ,x.shape) #打印这行确定导出为onnx的输入的大小
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x) 
        return x

import torch.nn as nn

# 定义LeNet网络结构
# class LeNet(nn.Module):
#     def __init__(self, num_classes=2):
#         super(LeNet, self).__init__()
#         self.features = nn.Sequential(
#             nn.Conv2d(3, 6, kernel_size=5),
#             nn.Tanh(),
#             nn.MaxPool2d(kernel_size=2),
#             nn.Conv2d(6, 16, kernel_size=5),
#             nn.Tanh(),
#             nn.MaxPool2d(kernel_size=2)
#         )
#         self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
#         self.classifier = nn.Sequential(
#             nn.Linear(28*28, 32),
#             nn.Tanh(),
#             nn.Linear(32, 84),
#             nn.Tanh(),
#             nn.Linear(84, num_classes)
#         )
#
#     def forward(self, x):
#         x = self.features(x)
#         x = self.avgpool(x)
#         # x = torch.flatten(x, 1)
#         x = x.view(x.size(0), -1)
#         x = self.classifier(x)
#         return x



learning_rate = 0.001
batch_size = 64
num_epochs = 100
class CustomDataset(Dataset):
    def __init__(self, data_dir, transform=None):
        self.classes = sorted(os.listdir(data_dir))
        self.class_to_idx = {cls_name: i for i, cls_name in enumerate(self.classes)}
        # print(self.class_to_idx)
        self.samples = []
        for cls_name in self.classes:
            cls_dir = os.path.join(data_dir, cls_name)
            for filename in os.listdir(cls_dir):
                path = os.path.join(cls_dir, filename)
                self.samples.append((path, self.class_to_idx[cls_name]))
        self.transform = transform

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, idx):
        path, label = self.samples[idx]
        with open(path, 'rb') as f:
            img = Image.open(f).convert('RGB')
        if self.transform is not None:
            img = self.transform(img)
        return img, label

# 定义数据集路径和转换操作
data_dir = 'C:\\mao\\code\\Tensorrt\\hymenoptera_data\\train'
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225])
])

# 创建自定义数据集实例和数据加载器
train_dataset = CustomDataset(data_dir, transform=transform)
train_dataloader = DataLoader(train_dataset , batch_size=32, shuffle=True)

test_data_dir = 'C:\\mao\\code\\Tensorrt\\hymenoptera_data\\val'
val_dataset = CustomDataset(test_data_dir, transform=transform)
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)
# 定义模型和优化器
# model = net.cuda()
criterion = nn.CrossEntropyLoss()
# optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 定义模型和优化器
# model = LeNet()
model = VGGNet()
if torch.cuda.is_available():
    model.cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

for name,parameters in model.named_parameters():
    print(name,':',parameters.size())
 # 填该层参数名

# 开始训练循环
for epoch in range(num_epochs):
    # 训练阶段
    model.train()
    for batch_idx, (data, targets) in enumerate(train_dataloader):
        # 将数据移动到设备上(例如 GPU)
        data, targets = data.to(device), targets.to(device)

        # 前向传播、计算损失和反向传播
        output = model(data)
        loss = nn.CrossEntropyLoss()(output, targets)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        # 打印训练进度
        if batch_idx % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                  .format(epoch+1, num_epochs, batch_idx+1, len(train_dataloader), loss.item()))

    # 验证阶段
    model.eval()
    with torch.no_grad():
        correct = 0
        total = 0
        for data, targets in val_dataloader:
            # 将数据移动到设备上(例如 GPU)
            data, targets = data.to(device), targets.to(device)

            # 前向传播并计算准确率
            output = model(data)
            _, predicted = torch.max(output.data, 1)
            total += targets.size(0)
            correct += (predicted == targets).sum().item()

        accuracy = 100 * correct / total
        print('Epoch [{}/{}], Validation Accuracy: {:.2f}%'
              .format(epoch+1, num_epochs, accuracy))


        # 将数据移动到设备上(例如 GPU)
        # data, targets = data.to(device), targets.to(device)
        #
        # # 前向传播、计算损失和反向传播
        # output = model(data)
        # loss = ...
        # loss.backward()
        # optimizer.step()
        #
        # # 打印训练进度
        # if batch_idx % log_interval == 0:
        #     print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
        #           .format(epoch+1, num_epochs, batch_idx+1, len(dataloader), loss.item()))


torch.save(model.state_dict(), 'vgg.pt')

将训练好的权重导出为onnx,导出的大小是通过加载数据集训练时的transform = transforms.Compose函数确定的。

import os
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from torch import nn
import torch.optim as optim
from torchvision import transforms, models
import torch


class VGGNet(nn.Module):
    def __init__(self, num_classes=2):
        super(VGGNet, self).__init__()
        net = models.vgg16(pretrained=True)
        net.classifier = nn.Sequential()
        self.features = net
        self.classifier = nn.Sequential(
                nn.Linear(512 * 7 * 7, 512),
                nn.ReLU(True),
                nn.Dropout(),
                nn.Linear(512, 128),
                nn.ReLU(True),
                nn.Dropout(),
                nn.Linear(128, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x


model = VGGNet()
# 查看输入张量形状
# print(model.features) 
# print(model.features[0].weight.shape)  # 输入为3通道的224x224图像
# 导出为ONNX文件
# torch.onnx.export(model, dummy_input, 'vgg16.onnx', verbose=True)

# 加载VGG16模型
vgg16 = models.vgg16(pretrained=False)
model.load_state_dict(torch.load('C:\\mao\\code\\python\\Classification\\VGG\\vgg.pt'))
dummy_input = torch.randn(32, 3, 224, 224)
# 导出为ONNX文件
torch.onnx.export(model, dummy_input, 'vgg16.onnx', verbose=True)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
你可以使用VGG模型训练自己的数据集。下面是一些步骤: 1. 收集和标记数据集:根据你的应用场景,收集足够的图像,并为每个图像提供正确的标签。确保数据集的标注准确。 2. 数据预处理:对数据集进行预处理,包括图像的大小调整、灰度化、归一化等操作。这些操作有助于提高模型训练效果。 3. 构建模型:使用PyTorch或TensorFlow等深度学习框架,构建VGG模型VGG模型的结构较为简单,你可以通过参考相关论文或开源代码来实现。 4. 加载训练模型权重:VGG模型在大规模图像数据集上进行过预训练,你可以下载训练权重并加载模型中。这样可以加快模型的收敛速度并提高准确率。 5. 自定义最后的全连接层:根据你的数据集类别数量,将VGG模型的最后一层全连接层替换为适当大小的新层。这样可以使模型适应你的数据集。 6. 设置超参数:包括学习率、批量大小、迭代次数等超参数。通过实验调整这些超参数,以获得最佳的训练效果。 7. 训练模型:使用训练集对模型进行训练。在每个训练迭代中,通过前向传播计算损失并通过反向传播更新模型参数。 8.评估模型:使用验证集评估训练过程中的模型性能。根据准确率、损失值等指标判断模型的表现。 9. 测试模型:最后,使用测试集对训练好的模型进行测试,评估其在未见过的数据上的泛化能力。 以上是训练自己数据集的一般步骤。具体实施时,你可能还需要处理类别不平衡问题、使用数据增强技术增加数据多样性等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值