从负责做个性化push推荐系统已经快一年了。开始做个性化push推荐系统,开始收集了各方面数据,通过各方面的数据表现和经验,来制定我们战略,然后好制定我们战术的打法。
下面我从以下三方面介绍push思考过程和做法:
1、业务分析
2、个性化推荐策略实践和总结
3、个性化push推荐系统架构
推荐系统我认为如果要做好,必须要把业务分析清楚,影响因素的排序和占比的估值一定要有个心理有数,他是我们战略指导的关键。实际中多给自己提问一些问什么,例如数据为什么会是这样的表现,是20%和30%而不是30%和20%,影响因素的排序是什么等等。
第一:业务分析
下图是我们推的地域场景和编辑统发的对比。做个引子,好让大家知道我们做的是什么。
大家想想, push做的事情会有哪些,我认为:
- 推广 - 运营 - 用户唤醒
对于个性化push做的三个是否在大方向和具体过程有区别尼。答案是大方向大体不会有改变,但是会做一件实际就是改善用户体验,具体过程当然是不一样。ok,个性化push我认为会做的事情如下:
- 精细化推广
- 精细化运营
- 改善用户体验
- 最新最热方式唤醒个性化推荐基本上视频属性特征、用户特征、领域文本主题特征。特征工程这块我们应该怎么利用。
咱们就拿用户特征分析举例子说下:
是否每个特征值下的push打开率打开率都差不多,能否结合用户特征做一个user level的循环系