个性化push推荐系统架构和经验分享 (一)

本文分享了作者在构建个性化push推荐系统过程中的思考和实践经验,包括业务分析、推荐策略与系统架构。强调了精细化推广、运营和改善用户体验的重要性,并探讨了用户特征的选择与时间序列在解决冷启动问题上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从负责做个性化push推荐系统已经快一年了。开始做个性化push推荐系统,开始收集了各方面数据,通过各方面的数据表现和经验,来制定我们战略,然后好制定我们战术的打法。
下面我从以下三方面介绍push思考过程和做法:
1、业务分析
2、个性化推荐策略实践和总结
3、个性化push推荐系统架构

推荐系统我认为如果要做好,必须要把业务分析清楚,影响因素的排序和占比的估值一定要有个心理有数,他是我们战略指导的关键。实际中多给自己提问一些问什么,例如数据为什么会是这样的表现,是20%和30%而不是30%和20%,影响因素的排序是什么等等。
第一:业务分析
下图是我们推的地域场景和编辑统发的对比。做个引子,好让大家知道我们做的是什么。

示例图片

  1. 大家想想, push做的事情会有哪些,我认为:

       - 推广
      - 运营 
      - 用户唤醒
    

    对于个性化push做的三个是否在大方向和具体过程有区别尼。答案是大方向大体不会有改变,但是会做一件实际就是改善用户体验,具体过程当然是不一样。ok,个性化push我认为会做的事情如下:
    - 精细化推广
    - 精细化运营
    - 改善用户体验
    - 最新最热方式唤醒

  2. 个性化推荐基本上视频属性特征、用户特征、领域文本主题特征。特征工程这块我们应该怎么利用。
    咱们就拿用户特征分析举例子说下:
    是否每个特征值下的push打开率打开率都差不多,能否结合用户特征做一个user level的循环系

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值