余弦定理的证明方法有很多种,这里介绍一种极简的证明方法。该方法是本人在工作中推导公式,无意中发现的。证明非常简单,下面简单做下记录。
如上图为任意三角形ABC,以点C为原点,建立直角坐标系(x轴方向任意,y轴与x轴垂直),x轴与CB夹角为
θ
1
\theta_1
θ1,x轴与CA夹角为
θ
2
\theta_2
θ2。点B的坐标为
(
a
c
o
s
θ
1
,
a
s
i
n
θ
1
)
(acos\theta_1, asin\theta_1)
(acosθ1,asinθ1),点A的坐标为
(
b
c
o
s
θ
2
,
b
s
i
n
θ
2
)
(bcos\theta_2, bsin\theta_2)
(bcosθ2,bsinθ2)。
求AB两点的距离:
∣
∣
A
B
∣
∣
=
c
=
(
b
c
o
s
θ
2
−
a
c
o
s
θ
1
)
2
+
(
b
s
i
n
θ
2
−
a
s
i
n
θ
1
)
2
=
a
2
+
b
2
−
2
a
b
(
c
o
s
θ
2
c
o
s
θ
1
+
s
i
n
θ
2
s
i
n
θ
1
)
=
a
2
+
b
2
−
2
a
b
c
o
s
(
θ
2
−
θ
1
)
=
a
2
+
b
2
−
2
a
b
c
o
s
C
(1)
||AB||=c=\sqrt{(bcos\theta_2-acos\theta_1)^2+(bsin\theta_2-asin\theta_1)^2} \\ = \sqrt{a^2+b^2-2ab(cos\theta_2cos\theta_1+sin\theta_2sin\theta_1)} \\ = \sqrt{a^2+b^2-2abcos(\theta_2-\theta_1)}=\sqrt{a^2+b^2-2abcosC} \tag 1
∣∣AB∣∣=c=(bcosθ2−acosθ1)2+(bsinθ2−asinθ1)2=a2+b2−2ab(cosθ2cosθ1+sinθ2sinθ1)=a2+b2−2abcos(θ2−θ1)=a2+b2−2abcosC(1)
式(1)两边平方得到余弦定理:
c
2
=
a
2
+
b
2
−
2
a
b
c
o
s
C
(2)
c^2=a^2+b^2-2abcosC \tag 2
c2=a2+b2−2abcosC(2)
若
C
=
π
/
2
C=\pi/2
C=π/2,
c
o
s
C
=
0
cosC=0
cosC=0,由式(2)得到勾股定理:
c
2
=
a
2
+
b
2
(3)
c^2=a^2+b^2 \tag 3
c2=a2+b2(3)
勾股定理可以认为是余弦定理的特例。证毕。
09-20
11-11
04-24