NNLM(神经网络语言模型)

简介

*NNLM是从语言模型出发(即计算概率角度),构建神经网络针对目标函数对模型进行最优化,训练的起点是使用神经网络去搭建语言模型实现词的预测任务,并且在优化过程后模型的副产品就是词向量。

*进行神经网络模型的训练时,目标是进行词的概率预测,就是在词环境下,预测下一个该是什么词,目标函数如下式, 通过对网络训练一定程度后,最后的模型参数就可当成词向量使用.

模型

*NNLM的网络结构(四层神经网络)如右图,主要参数有:            

      [1]词库大小(假定有8W个词)            

      [2]转化的词向量大小(假定为300维长度)            

      [3]输入层神经元数(即词的滑动窗口容量,假定滑窗大小为4)            

      [4]隐层神经元数量(假定为100个)            

      [5]输出层神经元数(对应词容量,有8W个)

      [6]由输入层到投影层的矩阵C(一个大的矩阵,大小为8W*300,是最后求解的目的,开始时随机初始化)          

      [7]从投影层到隐层的权值矩阵H和偏置矩阵B          

      [8]从隐层到输出层的权值矩阵U和偏置矩阵D

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值