深度学习day01

文章探讨了机器学习中的训练与预测过程,包括数据划分、模型评估与优化。通过房价预测案例,说明了模型训练时的归一化处理和损失函数(如均方误差)的重要性。优化方法中提到了梯度下降法,特别是随机梯度下降在处理大规模数据时的优势。此外,还简述了图像处理中的翻转和裁剪操作。
摘要由CSDN通过智能技术生成

机器学习的:训练和预测,即归纳和演绎

假设-->评价-->优化

将数据划分为训练集和测试集,其中训练集用于确定模型的参数,测试集用于评判模型的效果。

在房价预测的案例中,有80%的数据用于训练集,20%用于测试集。对特征取值范围进行归一化处理,对训练集和测试集都进行归一化处理,其中测试集是使用训练集的均值和极值来进行计算,

模型好坏的衡量指标:损失函数。通常是使用均方误差来作为评价模型好坏的指标。

在求解损失函数的最小值时,通常是使用梯度下降法来求解,(使用求导的方法来求并不可取,正向计算简单,但反向求解是比较难的。但这种在密码学和军事中应用比较多),怎样才能比较快的选到最低点:

 确定方向和步长。

随机梯度下降:每次只随机选出一部分数据来代表整体,基于者部分数据来计算梯度和损失函数来更新参数,而不是全部的样本数据来计算,这样计算量不是很大,性能比较高(特别的样本量非常大时,差别会更明显)。

一般的实现流程:

 

房价预测的案例是机器学习的入门;手写数字识别是深度学习的入门。

房价预测之后还可以进行反归一化,这样得到的结果和真实的值会更接近。

图片的翻转与裁剪的实现:图像是由像素点构成的矩阵,数值可以用ndarray来表示。

翻转:垂直+水平方向的翻转

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值