Trace链异常检测汇总

本文探讨了微服务系统中调用链监控的重要性,特别是在复杂的依赖关系中。通过Kubernetes架构中的Pod、node和service,文章介绍了如何利用trace链进行故障检测和根因定位,以及LOUDS编码和SURF等技术在异常检测中的应用。
摘要由CSDN通过智能技术生成

        微服务应用与单块应用完全不同,一个微服务系统少则有几十个微服务组成,多则可能有上百个服务。比如BAT级别的互联网公司,一般都超过上百个服务,服务之间的依赖关系错综复杂,如果没有有效的监控手段,那么出现问题很难快速排查,最终会导致业务损失。在微服务监控领域,当分布式系统发生故障时,由于服务之间复杂且动态的互相依赖关系,诊断与定位故障根因往往是非常困难的, 调用链监控是比较有效的手段,它不仅可以实时监控服务调用性能,也可以实时跟踪服务的依赖关系,出现问题的时候,通过调用链监控,可以帮助我们快速定位问题和排障,可以说微服务离不开调用链监控。

假设有3个服务,service1, service2, service3. 他们之间是有调用关系的。当外部请求进来的时候:用户请求先到service1, service1调用redis缓存(红色小方块),redis返回service1数据。service1调用service2,service2调用mysql,mysql返回service2数据。service2调用service3, service3返回给service2service2返回给service1service1返回给用户。

架构知识

微服务系统一般采用K8S(Kubernetes)微服务架构,在这个架构下,与trace链相关的概念有三个:pod,node,service,通常做trace链异常定位时,需要知道是pod级别还是node级别或者service级别的故障,并且需要知道对应的编号(如node-1)。

Kubernetes创建了一个Pod来放置你的应用实例,pod是Kubernetes上最小部署单元。Pod是Kubernetes中的一个抽象概念,一个Pod包含了一组应用容器(比如Docker或者rkt)和这些容器共用的资源。pod模拟出了一个应用运行所需要的“逻辑主机”;一个Pod总是运行在一个Node上。在Kubernetes中一个Node是一个执行具体工作的机器,它可用是虚拟机也可用是物理机,这个取决于所在的集群。每个Node都由Master统一管理。每个Node上面可用有多个Pod,Kubernetes Master会自动在Node之间处理调度相关的处理。Master自动调度会记录每个Node上的可用资源。

按故障粒度来分的话,service最粗糙,node次之,pod最细粒度,node可以理解成一个物理虚拟机,pod可以理解成一个虚拟机上的容器(如docker这种),每个service可以调用不同虚拟机上的容器服务(一个service包含3-4个pod),但是这个3-4pod不一定部署在一台虚拟机上(分布式系统的特点,能最大程度利用资源)。

trace链实现异常检测与根因定位

Trace链做异常检测时,是以每条trace链作为研究对象或一个样本,由于trace调用结构有差异性,所以需要先要确定trace的常用标准模式,然后在常用标准模式下构建模型训练集去判断是否异常;判断完一条trace链异常之后需要做根因定位,根因定位的研究对象是trace链上的每一个节点(span、service等视数据粒度而定),一般定位结果[cmdb_id, fault_type, prob, topk],其中cmdb_id可以理解为是哪个级别(pod、node、service)的故障,fault_type(结合metic指标,如容器类故障、磁盘故障等),prob指故障概率,topk是指出现故障的前K个节点,这个取K不一定根据异常分数,也需要考虑调用顺序。

trace链构建算法输入

Trace链中一个样本可以是一个trace也可以是一个span,当样本为一个trace时,特征一般为trace下子节点(span、operation等)的时延、日志、状态码信息,当以span作为子节点时,每条trace的节点长度不一致(除非采取类似于词向量embedding的方式编码成等长的向量),导致模型输入特征长度不一致,需要构建多个trace异常检测模型对trace链进行异常检测,由于实际数据中的标签缺乏,通常问题会定义为无监督、半监督的问题。一般来说,适用span作为一个样本时,主要是用来做根因检测,由于trace链数据频率高且多,所以做根因定位时不应用较为复杂的方法,通常会对每个trace模式下的span进行统计上异常判断。

1)对每一个trace_id进行LOUDS编码(30年前,现在有surf),LOUDS利用每个trace下的服务(span_id、operation)进行编码形成调用树,调用树表示调用结构,可以还原调用关系,除此之外会对trace_id和operation进行重新编码、去重,对每一个operation,存储其时延信息。

2)在训练集上分别统计normal和fault的trace调用模式,筛选调用次数多(>5000次)的作为调用的关键模式,目的为了提高搜索匹配效率

3)实时检测时,对一定时间间隔内(5分钟内)的调用信息中的每一个trace先进行编码,与调用模式库进行匹配(只匹配标准模式),对于标准模式匹配上的调用树,导出对应trace模式下的训练集,先进行无监督或半监督的异常检测,判断待检测trace链是否异常。如若异常,则对trace链从上至下进行时延6_sigma进行异常检测,超出6sigma的视为异常,同时统计历史样本中该服务的次数与异常次数,将其比值作为后验概率,加入trace链异常检测理论上能搞提高检测效率,因为新来一条trace不一定都要做根因分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值