图论------Bellman-Ford算法求单源最短路径的优化

目录

前情回顾:

画图分析:

具体代码:


前情回顾:

        大家是否还记得我们之前讲过的Bellman-Ford算法,如果忘记的话可以点击链接去复习一下:图论------贝尔曼-福德(Bellman-Ford)算法-CSDN博客

        当时我们是通过画图打表格来讲解的,但是最后代码输出的结果和我给的数据略有差距,这是因为我们是想要将这个数据当作无向图的数据来处理的,但是当时我给到的代码是用来处理有向图的,那我们该怎么办,将u,v,w数据扩展两倍反向再次储存一次边吗?实际上没必要,我们要做的就是多添加两行代码。

画图分析:

        首先大家请看下图:

        

        我们能看到 图中存在 2 4 3这一条数据,那么代码运行时一定会有:

if( dic[ 4 ] > dic[ 2 ] + 3) 这一条,显然不成立,因为 dic[ 2 ] = 8,所以无法成立,无法优化1 到 4 的值,然后我们再来看 1 到 2 能不能优化,发现 dic[ 2 ] = dic[ 1 ] + 8无法优化,如果通过 2 4 3这条边能不能优化1 到 2的值呢?我们发现好像不可以哎,因为在之前的代码中的视角,这是个有向图,可惜,如果是无向图就好了,我们会想该怎么调整代码让代码将数据当作无向图处理呢?比如

2 4 3 也可以当作 4 2 3 处理。

        当然是可以的,接下来我要讲的东西有点抽象:

        大家想一想,在之前代码的认知中w[ i ]是不是有向的,那是因为u[ i ] -->v[ i ]这条边我们只使用了一次,以 2 4 3 这条数据为例:

        第一次使用是 判断 是否 dic[ 4 ] > dic[ 2 ] + 3 意思是 1 到 4 能不能 通过 1 -> 2 -> 4来更新,那么如何第二次将2 -> 4 这条边当作 4 -> 2 来使用呢?就是if(dic[ 2 ] > dic[ 4 ] +3),意思是是否能通过 1 -> 4 -> 2来更新 1到 2的值,如果每条边都那么处理两次,相当于将该图当作无向图处理,因为每条边都 正反 处理了两次。

具体代码:

        

#include<stdio.h>
int main(void)
{
    int u[10], v[10], w[10];
    int n, m, inf = 99999999;
    int dic[10] = { 0 };

    scanf("%d%d", &n, &m);
    for (int i = 1; i <= m; i++)
        scanf("%d%d%d", &u[i], &v[i], &w[i]);

    for (int i = 2; i <= n; i++)
        dic[i] = inf;

    for (int k = 1; k <= n - 1; k++)
        for (int i = 1; i <= m; i++)
            if (dic[v[i]] > dic[u[i]] + w[i])
                dic[v[i]] = dic[u[i]] + w[i];
            else if (dic[u[i]] > dic[v[i]] + w[i])
                dic[u[i]] = dic[v[i]] + w[i];

    for (int i = 1; i <= n; i++)
        printf("%d ", dic[i]);
}

        那么如果所有的路径都已经优化完成了怎么样退出循环呢?

#include<stdio.h>

int main(void)

{

    int u[10], v[10], w[10];

    int n, m, inf = 99999999;

    int dic[10] = { 0 };

    scanf("%d%d", &n, &m);

    for (int i = 1; i <= m; i++)

        scanf("%d%d%d", &u[i], &v[i], &w[i]);

    for (int i = 2; i <= n; i++)

        dic[i] = inf;

    for (int k = 1; k <= n - 1; k++)

    {

        int flag = 0;//检查是否提前退出循环。

        for (int i = 1; i <= m; i++)

            if (dic[v[i]] > dic[u[i]] + w[i])

            {

                dic[v[i]] = dic[u[i]] + w[i]; flag = 1;

            }

            else if (dic[u[i]] > dic[v[i]] + w[i])

            {

                dic[u[i]] = dic[v[i]] + w[i]; flag = 1;

            }

        if (flag == 1)

            break;

    }

    for (int i = 1; i <= n; i++)

        printf("%d ", dic[i]);

}

当然是 for (int i = 1; i <= m; i++)循环发现一轮没有路径优化时退出啦。

  • 30
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值