TALK | 在字节跳动实习是什么体验

以前确定了公众号只更新技术方向的文章,但是随着遇到越来越多的事和越来越多的人,不断成长的过程中往往伴随着许多的思考,这些思考的过程记录下来也是一件很有意思的事,所以公众号专门开拓一个TALK专栏,用来记录学习和生活中的一些思考与印记。

下周是我在字节实习的最后一周,抛开技术不谈,用这篇文章记录一下我两个月的实习生活吧。

字节的会议制度

我是在7月1号早上入职的,当天入职字节的时候,正巧赶上了用户中台周五的周会,还没有摸清头脑,就直接坐到会议室里一起开会了,周五的会议是采用的阅读+讨论的形式,开会一半的时间都在阅读,剩下的时间,过阅读时的评论,字节的开会从来不用PPT这些花里胡哨的,只使用飞书文档,不用花大量时间在PPT上,效率很高。

字节是在每个双月之初确定这个双月的发展目标和关键进展(OKR),OKR是字节内部的进度对齐管理工具,我在这个双月也负责了团队的一个KR。

开完会,我就被我的mentor领到了工位,熟悉了工区,介绍了字节中最重要的精神理念——字节范。

字节范

字节范在知乎上褒贬不一,不过我认为抛开对公司管理和利益的因素来看,如果能在生活中做事的时候真正的做到字节范,对个人的成长还是有好处的。

字节范是字节共同的做事方法,总结为六个四字词语,就跟学校的校训一样:

始终创业、多元兼容、坦诚清晰、求真务实、敢为极致和共同成长。对于字节范的解读,大家可以自己从各角度去解读,我这里就先不展开了。

提到了字节范,也不得不提字节的一个特点,扁平化的管理,扁平管理让leader变少了,然后leader管的人变多一些,就好像一棵树,让中间每个结点都有更多的子树,从而这棵树的深度就变低了,确实如此,我顺着我的leader的上级点上去,我的+6上级就是CEO梁汝波了edb12b3edb8fdb920c8755f03aa0b770.png,对于字节这么大体量的公司来说,确实很扁平了,扁平化管理就使得字节内部的层层上报要更加的快捷。

公司发的字节范饼干,有一块被我吃掉了哈哈:

bf00e1d23335777d680a04240306f2c4.jpeg

吃在字节

字节食堂据说是算不上大厂中特别好的,但是对我这种从厦门翔安村里出来的同学来说,字节食堂真的已经相!当!的!不!错!了!每天自助餐都是3道主食(2种米饭配上玉米、馒头、炒粉之类的)、2道素菜、3道荤菜、3种汤以及水果和饮料,是自助餐,想吃多少吃多少。

84202e4e4b4df356fe906d92b46f8eb2.jpeg

eda0efc61fc2bf59e7f60bd060caeed9.jpeg

每双周周三吃得会好一些会有红烧肉、小龙虾、白灼虾、椰子鸡、烤猪排什么的,也是随便打,真正实现小龙虾自由。

ff1592d96d41b0a77649821134c9b2c1.jpeg

dede513598e8e8eff6f62191fbf1e078.jpeg

4d0b49c1377834ef09702a357d637d67.jpeg

51e20d1b670af02f6ff6fb215a1da027.png

茶水间全天都有小零食,茶包,牛奶咖啡热水都是随便喝,在每天下午3点半的时候,字节还会派发下午茶,下午茶有些时候是水果,有些时候是肯德基麦当劳什么的,有些时候是一些点心或者糖水。

088628f2c64174ea0e6a5390723db1d1.jpeg

食堂的粉面、水饺也是自助形式的,可以加非常非常多的料~

874740a7740cda3e60dc94d57169ba6c.jpeg

除了食堂可以选之外,公司还提供了外卖可以点,每周都可以免费点肯德基汉堡王喜家德呷脯呷脯这些~

f0315a0ea95fb81c9bc363969d9aae0c.jpeg

总之就吃而言,我个人感觉还是超赞的,至少数据上显示我打工期间长了快十斤。。。不过幸好食堂楼上就是健身房。

工作强度

字节上下班不打卡,早上10点半左右大家就陆陆续续的到了,然后通常是晚上7点吃完饭之后,如果没事那也就可以走了,周六周日是不需要来公司上班的,所以,如果不是我自己亲身体验,我也会以为大厂的996相当严重,但是至少字节,(作为实习生)1075是可以做到的,我的正式员工的同事们要稍微辛苦一些,但是平均也是晚上9到10点走。

我作为实习生,在经过两个星期的学习之后,就已经开始被安排接手业务需求了,我在职期间还是大大小小完成了差不多10个的业务需求,还负责了团队OKR中的一个KR,可以说只要大家登录过字节系的产品,就已经走到过我写的代码了ac348f7cc27b5191d3c4a97b6b6120a4.png

不过要说工作上的挑战这一方面,我认为主要的挑战并不是在写代码上,而是在idea和上亿级流量带来的稳定性上,由于上亿级的流量,对于上线必须慎之又慎,要做充分的测试,因为由于流量过大,任何一个小的bug都可能会造成百万级别的损失,我认为这个才是大厂经历中最具挑战性的地方。

关于招聘

就我所在的团队而言,人力还是不够的,所以也就一直都在招聘,就业务中台而言,依旧是有hc的,但是,进入的门槛也是相当的高,我也在牛客上发了一些帖子进行内推,收到了18份简历,其中11份连面试环节都没有入选,这让我不禁觉得自己当时能入围还是相当的幸运以及读书还是有用的

体验到大厂的工作生活环境之后,更是理解了为什么那么多人冲破头都要进大厂工作,因为大厂除了薪水高之外,也为员工分摊了很多生活成本,就我而言,我在周一到周五甚至可以不花一分钱,而周六周日花在吃上的费用每天大概就需要100元。

同事们

同事们都相当的不错,绝大多数的人都很nice,都会很积极主动的去完成探讨和解决问题,我所在的团队氛围也非常的好,坐在我身边的同事们也很乐意给我解答问题,吃饭的时候都会拉上我,在7月份,团队还组织了一次聚餐:

b06b60ca9d5e00f7e1811961450702fe.jpeg

这次聚餐有一个特色就是,leader还没到,大家就已经吃完了,看,这就是字节范在生活中的体现b9e4e88f65da077e8bd42ab974f53f3f.png

总而言之,能有这样一次在大厂的实习经历,了解大厂的工作模式,感受工作氛围,同时也在挑战中学到了不少新的内容,而且作为一名因为要读研无法转正的实习生,大厂的工作压力没有直接到我的身上,生活还是相当舒适的,当然不仅仅是这两个月舒适,存下来的钱也应该够让我大四生活滋润了80aa0c84945937b481736959ccf80070.png

by the way,字节跳动秋招进行中,趁我还没有离职,可以联系我帮你内推噢~

### 跨模态视频检索技术介绍 跨模态视频检索是一种涉及多学科交叉的技术,它允许用户通过不同类型的查询(如文本描述、图像或其他形式的数据)来查找最相关的视频片段。这项技术依赖于强大的算法和模型,特别是像CLIP这样的预训练模型,在处理复杂的多媒体数据方面表现出色[^2]。 #### CLIP模型的工作原理 CLIP (Contrastive Language–Image Pre-training) 是一种由OpenAI开发的深度学习架构,能够理解并关联来自两个不同域的信息——即自然语言和视觉内容。具体来说: - **联合嵌入空**:该模型可以将图片与对应的文本映射到同一个高维向量空中; - **对比损失函数**:利用成对样本之的相似度作为监督信号来进行优化训练; 这种设计使得即使是在未见过的情况下也能很好地匹配新的图文组合,从而实现高效的跨媒体搜索功能。 #### 应用场景实例 为了更好地展示如何应用这些理论知识解决实际问题,在一次名为 "J-Tech Talk | 跨模态视频检索进阶" 的在线讲座活动中提到过这样一个案例研究: 假设有一个庞大的监控录像库,想要快速定位某个人物出现在哪些位置,则可以通过输入一张目标人物的照片以及一段简短的文字说明(比如时范围),系统就能自动筛选出符合条件的结果列表供进一步审查。 ```python import clip import torch model, preprocess = clip.load("ViT-B/32") # 加载预训练好的CLIP模型 text_inputs = ["一个人穿着红色衣服走在街上"] # 用户提供的文字提示 image_input = preprocess(image).unsqueeze(0) with torch.no_grad(): text_features = model.encode_text(clip.tokenize(text_inputs)) image_features = model.encode_image(image_input) logits_per_image, logits_per_text = model(image_features, text_features) probs = logits_per_image.softmax(dim=-1).cpu().numpy() print(f"预测概率为 {probs}") ``` 此代码展示了使用Python调用CLIP API执行简单的跨模式匹配操作的方法。这里先加载了一个预先训练完成的基础版CLIP网络结构,并准备好了待比较的目标对象表示形式(无论是基于文本还是图形)。之后计算两者的距离得分并通过softmax转换成易于解释的概率分布输出给最终使用者参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值