VOC格式xml标签与YOLO格式txt标签相互转换

本文详细介绍了VOC格式的XML标签与YOLO格式的TXT标签在仓储托盘检测中的应用,并提供了Python脚本,用于两者之间的转换,包括VOC转YOLO的公式和示例,以及YOLO转VOC的步骤和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自:LabelImg标注的VOC格式xml标签与YOLO格式txt标签相互转换_wangmj_hdu的博客-CSDN博客

 

1、VOC标签格式说明

VOC数据格式,会直接把每张图片标注的标签信息保存到一个xml文件中。

例如我在做仓储托盘检测的时候,需要对图片中的托盘进行标注,标注的标签信息会保存到一个跟图片对应的xml文件中(每张图片与每个xml文件一一对应),xml中的信息如下:

 

<annotation>
	<folder>Images</folder>
	<filename>1.jpg</filename>
	<path>/home/wangmj/pallet_data/Images/1.jpg</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>1920</width>
		<height>1080</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>forklift_pallet</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>437</xmin>
			<ymin>557</ymin>
			<xmax>1230</xmax>
			<ymax>660</ymax>
		</bndbox>
	</object>
</annotation>

 

xml文件中的关键信息说明:

    1.jpg,这是图片名称,则xml文件名为1.xml;
    /home/wangmj/pallet_data/Images/1.jpg,这是存放该图片的绝对路径;
    1920 * 1080,这是图片分辨率,3代表三通道图片;
    forklift_pallet,这是类别名;
    xmin,ymin,xmax,ymax,定义了每个目标的标定框坐标:即左上角的坐标和右下角的坐标;
 

2、YOLO标签格式说明

YOLO标签格式,会直接把每张图片标注的标签信息保存到一个txt文件中。

我的图片名称为1.jpg,则对应的txt文件名称为1.txt。

同样例如我在做仓储托盘检测的时候,需要对图片中的托盘进行标注,标注的标签信息会保存到一个跟图片对应的txt文件中,txt中的信息如下:
 

0 0.433594 0.562037 0.409896 0.092593

txt文件中的关键信息说明:

    每一行代表标注的一个目标,我这张图中只标注了一个目标,所以只有一行;
    第一个数字0代表标注目标的类别;
    后面四个数字代表标注框的中心坐标和标注框的相对宽和高(进行了归一化处理);
    五个数据从左到右依次为:class x_center y_center width height

同时还会生成一个classes.txt,里面内容如下:

forklift_pallet

注意这个是分类的类型,需要在后面的yolo转voc_xml时根据自己的类型种类进行更改

3、voc格式转化为yolo格式

标注好的voc格式的标签xml文件,主要信息为:

    1.jpg,这是图片名称;
    /home/wangmj/pallet_data/Images/1.jpg,这是存放该图片的绝对路径;
    1920 * 1080,这是图片分辨率,3代表三通道图片;
    forklift_pallet,这是类别名;
    xmin,ymin,xmax,ymax,定义了每个目标的标定框坐标:即左上角的坐标和右下角的坐标;
例如下面一张图:

 

 

    原图大小为1920 * 1080
    紫色框代表标注物体的框,紫色框的左上角的坐标为(xmin,ymin)=(372,518),右下角的坐标为(xmax,ymax)=(1344,674)

voc_to_yolo.py的目的就是把voc数据格式转换为yolo格式:

    voc格式标签:图片的实际宽高,标注框的左上角和右下角坐标;
    yolo格式标签:标注框的中心坐标(归一化),标注框的宽和高(归一化)。

voc格式转换为yolo格式计算公式:

    框中心的实际坐标(x,y),一般可能还会在后面减1

 

 

    归一化以后的中心坐标(x,y)

 

 

    框的高和宽(归一化后)

 

 

voc格式的xml标签文件转化yolo格式的txt标签文件代码:voc_to_yolo.py
 

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

def convert(size, box):
    # size=(width, height)  b=(xmin, xmax, ymin, ymax)
    # x_center = (xmax+xmin)/2        y_center = (ymax+ymin)/2
    # x = x_center / width            y = y_center / height
    # w = (xmax-xmin) / width         h = (ymax-ymin) / height
    
    x_center = (box[0]+box[1])/2.0
    y_center = (box[2]+box[3])/2.0
    x = x_center / size[0]
    y = y_center / size[1]

    w = (box[1] - box[0]) / size[0]
    h = (box[3] - box[2]) / size[1]
 
    # print(x, y, w, h)
    return (x,y,w,h)

def convert_annotation(xml_files_path, save_txt_files_path, classes):  
    xml_files = os.listdir(xml_files_path)
    # print(xml_files)
    for xml_name in xml_files:
        # print(xml_name)
        xml_file = os.path.join(xml_files_path, xml_name)
        out_txt_path = os.path.join(save_txt_files_path, xml_name.split('.')[0] + '.txt')
        out_txt_f = open(out_txt_path, 'w')
        tree=ET.parse(xml_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)

        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult) == 1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
            # b=(xmin, xmax, ymin, ymax)
            # print(w, h, b)
            bb = convert((w,h), b)
            out_txt_f.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


if __name__ == "__main__":
    # 把forklift_pallet的voc的xml标签文件转化为yolo的txt标签文件
    # 1、需要转化的类别
    classes = ['forklift_pallet']#注意:这里根据自己的类别名称及种类自行更改
    # 2、voc格式的xml标签文件路径
    xml_files1 = r'/home/wangmj/pallet_data/Annotations'
    # 3、转化为yolo格式的txt标签文件存储路径
    save_txt_files1 = r'/home/wangmj/pallet_data/test'

    convert_annotation(xml_files1, save_txt_files1, classes)

4、yolo格式转化为voc格式

voc格式中保存的信息为:xmin,ymin,xmax,ymax,所以只要根据上面的公式,就可以推导出这四个值。

yolo格式的txt标签文件转化voc格式的xml标签文件代码:yolo_to_voc.py

import os
import xml.etree.ElementTree as ET
from xml.dom.minidom import Document
import cv2

'''
import xml
xml.dom.minidom.Document().writexml()
def writexml(self,
             writer: Any,
             indent: str = "",
             addindent: str = "",
             newl: str = "",
             encoding: Any = None) -> None
'''

class YOLO2VOCConvert:
    def __init__(self, txts_path, xmls_path, imgs_path):
        self.txts_path = txts_path   # 标注的yolo格式标签文件路径
        self.xmls_path = xmls_path   # 转化为voc格式标签之后保存路径
        self.imgs_path = imgs_path   # 读取读片的路径各图片名字,存储到xml标签文件中
        '''#注意:这里根据自己的类别名称及种类自行更改'''
        self.classes = ['forklift_pallet']#注意:这里根据自己的类别名称及种类自行更改

    # 从所有的txt文件中提取出所有的类别, yolo格式的标签格式类别为数字 0,1,...
    # writer为True时,把提取的类别保存到'./Annotations/classes.txt'文件中
    def search_all_classes(self, writer=False):
        # 读取每一个txt标签文件,取出每个目标的标注信息
        all_names = set()
        txts = os.listdir(self.txts_path)
        # 使用列表生成式过滤出只有后缀名为txt的标签文件
        txts = [txt for txt in txts if txt.split('.')[-1] == 'txt']
        print(len(txts), txts)
        # 11 ['0002030.txt', '0002031.txt', ... '0002039.txt', '0002040.txt']
        for txt in txts:
            txt_file = os.path.join(self.txts_path, txt)
            with open(txt_file, 'r') as f:
                objects = f.readlines()
                for object in objects:
                    object = object.strip().split(' ')
                    print(object)  # ['2', '0.506667', '0.553333', '0.490667', '0.658667']
                    all_names.add(int(object[0]))
            # print(objects)  # ['2 0.506667 0.553333 0.490667 0.658667\n', '0 0.496000 0.285333 0.133333 0.096000\n', '8 0.501333 0.412000 0.074667 0.237333\n']

        print("所有的类别标签:", all_names, "共标注数据集:%d张" % len(txts))

        return list(all_names)

    def yolo2voc(self):
        # 创建一个保存xml标签文件的文件夹
        if not os.path.exists(self.xmls_path):
            os.mkdir(self.xmls_path)

        # 把上面的两个循环改写成为一个循环:
        imgs = os.listdir(self.imgs_path)
        txts = os.listdir(self.txts_path)
        txts = [txt for txt in txts if not txt.split('.')[0] == "classes"]  # 过滤掉classes.txt文件
        print(txts)
        # 注意,这里保持图片的数量和标签txt文件数量相等,且要保证名字是一一对应的   (后面改进,通过判断txt文件名是否在imgs中即可)
        if len(imgs) == len(txts):   # 注意:./Annotation_txt 不要把classes.txt文件放进去
            map_imgs_txts = [(img, txt) for img, txt in zip(imgs, txts)]
            txts = [txt for txt in txts if txt.split('.')[-1] == 'txt']
            print(len(txts), txts)
            for img_name, txt_name in map_imgs_txts:
                # 读取图片的尺度信息
                print("读取图片:", img_name)
                img = cv2.imread(os.path.join(self.imgs_path, img_name))
                height_img, width_img, depth_img = img.shape
                print(height_img, width_img, depth_img)   # h 就是多少行(对应图片的高度), w就是多少列(对应图片的宽度)

                # 获取标注文件txt中的标注信息
                all_objects = []
                txt_file = os.path.join(self.txts_path, txt_name)
                with open(txt_file, 'r') as f:
                    objects = f.readlines()
                    for object in objects:
                        object = object.strip().split(' ')
                        all_objects.append(object)
                        print(object)  # ['2', '0.506667', '0.553333', '0.490667', '0.658667']

                # 创建xml标签文件中的标签
                xmlBuilder = Document()
                # 创建annotation标签,也是根标签
                annotation = xmlBuilder.createElement("annotation")

                # 给标签annotation添加一个子标签
                xmlBuilder.appendChild(annotation)

                # 创建子标签folder
                folder = xmlBuilder.createElement("folder")
                # 给子标签folder中存入内容,folder标签中的内容是存放图片的文件夹,例如:JPEGImages
                folderContent = xmlBuilder.createTextNode(self.imgs_path.split('/')[-1])  # 标签内存
                folder.appendChild(folderContent)  # 把内容存入标签
                annotation.appendChild(folder)   # 把存好内容的folder标签放到 annotation根标签下

                # 创建子标签filename
                filename = xmlBuilder.createElement("filename")
                # 给子标签filename中存入内容,filename标签中的内容是图片的名字,例如:000250.jpg
                filenameContent = xmlBuilder.createTextNode(txt_name.split('.')[0] + '.jpg')  # 标签内容
                filename.appendChild(filenameContent)
                annotation.appendChild(filename)

                # 把图片的shape存入xml标签中
                size = xmlBuilder.createElement("size")
                # 给size标签创建子标签width
                width = xmlBuilder.createElement("width")  # size子标签width
                widthContent = xmlBuilder.createTextNode(str(width_img))
                width.appendChild(widthContent)
                size.appendChild(width)   # 把width添加为size的子标签
                # 给size标签创建子标签height
                height = xmlBuilder.createElement("height")  # size子标签height
                heightContent = xmlBuilder.createTextNode(str(height_img))  # xml标签中存入的内容都是字符串
                height.appendChild(heightContent)
                size.appendChild(height)  # 把width添加为size的子标签
                # 给size标签创建子标签depth
                depth = xmlBuilder.createElement("depth")  # size子标签width
                depthContent = xmlBuilder.createTextNode(str(depth_img))
                depth.appendChild(depthContent)
                size.appendChild(depth)  # 把width添加为size的子标签
                annotation.appendChild(size)   # 把size添加为annotation的子标签

                # 每一个object中存储的都是['2', '0.506667', '0.553333', '0.490667', '0.658667']一个标注目标
                for object_info in all_objects:
                    # 开始创建标注目标的label信息的标签
                    object = xmlBuilder.createElement("object")  # 创建object标签
                    # 创建label类别标签
                    # 创建name标签
                    imgName = xmlBuilder.createElement("name")  # 创建name标签
                    imgNameContent = xmlBuilder.createTextNode(self.classes[int(object_info[0])])
                    imgName.appendChild(imgNameContent)
                    object.appendChild(imgName)  # 把name添加为object的子标签

                    # 创建pose标签
                    pose = xmlBuilder.createElement("pose")
                    poseContent = xmlBuilder.createTextNode("Unspecified")
                    pose.appendChild(poseContent)
                    object.appendChild(pose)  # 把pose添加为object的标签

                    # 创建truncated标签
                    truncated = xmlBuilder.createElement("truncated")
                    truncatedContent = xmlBuilder.createTextNode("0")
                    truncated.appendChild(truncatedContent)
                    object.appendChild(truncated)

                    # 创建difficult标签
                    difficult = xmlBuilder.createElement("difficult")
                    difficultContent = xmlBuilder.createTextNode("0")
                    difficult.appendChild(difficultContent)
                    object.appendChild(difficult)

                    # 先转换一下坐标
                    # (objx_center, objy_center, obj_width, obj_height)->(xmin,ymin, xmax,ymax)
                    x_center = float(object_info[1])*width_img + 1
                    y_center = float(object_info[2])*height_img + 1
                    xminVal = int(x_center - 0.5*float(object_info[3])*width_img)   # object_info列表中的元素都是字符串类型
                    yminVal = int(y_center - 0.5*float(object_info[4])*height_img)
                    xmaxVal = int(x_center + 0.5*float(object_info[3])*width_img)
                    ymaxVal = int(y_center + 0.5*float(object_info[4])*height_img)

                    # 创建bndbox标签(三级标签)
                    bndbox = xmlBuilder.createElement("bndbox")
                    # 在bndbox标签下再创建四个子标签(xmin,ymin, xmax,ymax) 即标注物体的坐标和宽高信息
                    # 在voc格式中,标注信息:左上角坐标(xmin, ymin) (xmax, ymax)右下角坐标
                    # 1、创建xmin标签
                    xmin = xmlBuilder.createElement("xmin")  # 创建xmin标签(四级标签)
                    xminContent = xmlBuilder.createTextNode(str(xminVal))
                    xmin.appendChild(xminContent)
                    bndbox.appendChild(xmin)
                    # 2、创建ymin标签
                    ymin = xmlBuilder.createElement("ymin")  # 创建ymin标签(四级标签)
                    yminContent = xmlBuilder.createTextNode(str(yminVal))
                    ymin.appendChild(yminContent)
                    bndbox.appendChild(ymin)
                    # 3、创建xmax标签
                    xmax = xmlBuilder.createElement("xmax")  # 创建xmax标签(四级标签)
                    xmaxContent = xmlBuilder.createTextNode(str(xmaxVal))
                    xmax.appendChild(xmaxContent)
                    bndbox.appendChild(xmax)
                    # 4、创建ymax标签
                    ymax = xmlBuilder.createElement("ymax")  # 创建ymax标签(四级标签)
                    ymaxContent = xmlBuilder.createTextNode(str(ymaxVal))
                    ymax.appendChild(ymaxContent)
                    bndbox.appendChild(ymax)

                    object.appendChild(bndbox)
                    annotation.appendChild(object)  # 把object添加为annotation的子标签
                f = open(os.path.join(self.xmls_path, txt_name.split('.')[0]+'.xml'), 'w')
                xmlBuilder.writexml(f, indent='\t', newl='\n', addindent='\t', encoding='utf-8')
                f.close()

if __name__ == '__main__':
    # 把yolo的txt标签文件转化为voc格式的xml标签文件
    # yolo格式txt标签文件相对路径
    txts_path1 = './test_txt'
    # 转化为voc格式xml标签文件存储的相对路径
    xmls_path1 = './test_xml'
    # 存放图片的相对路径
    imgs_path1 = './Images'

    yolo2voc_obj1 = YOLO2VOCConvert(txts_path1, xmls_path1, imgs_path1)
    labels = yolo2voc_obj1.search_all_classes()
    print('labels: ', labels)
    yolo2voc_obj1.yolo2voc()

### 回答1: 将labelimg标注的voc格式标签xml文件转换yolo格式标签txt文件,需要进行以下步骤: 1. 读取xml文件中的标注信息,包括目标类别、位置坐标等。 2. 根据yolo格式的要求,将目标位置坐标转换为相对于图像宽度和高度的比例。 3. 将目标类别转换为对应的数字标签,例如将“猫”转换为“”、“狗”转换为“1”。 4. 将转换后的标注信息按照yolo格式的要求,写入txt文件中。 将yolo格式标签txt文件转换为labelimg标注的voc格式标签xml文件,需要进行以下步骤: 1. 读取txt文件中的标注信息,包括目标类别、位置坐标等。 2. 根据voc格式的要求,将目标位置坐标转换为左上角和右下角的坐标值。 3. 将目标类别转换为对应的文字标签,例如将“”转换为“猫”、“1”转换为“狗”。 4. 将转换后的标注信息按照voc格式的要求,写入xml文件中。 以上是将labelimg标注的voc格式标签xml文件和yolo格式标签txt文件相互转换的基本步骤,具体实现可以参考相关的代码库和工具。 ### 回答2: LabelImg是一种用于图像标注的常用工具,支持输出多种格式的标注文件,其中包括voc格式标签xml文件和yolo格式标签txt文件。这些标签文件可以用于计算机视觉应用程序的训练和测试,因此在进行目标检测和物体识别非常重要。 在实际应用中,可能需要将标签文件从一种格式转换为另一种格式。下面将介绍如何将LabelImg标注的voc格式标签xml文件和yolo格式标签txt文件相互转换: 1. 将voc格式标签文件转换yolo格式标签文件 将voc格式标签文件转换yolo格式标签文件需要执行以下步骤: (1)将标签文件的路径保存到txt文件中。在标签xml文件的所在目录下创建一个txt文件并将标签文件的路径写入文件中。 (2)通过脚本来转换标签文件。执行以下命令来转换标签文件: python voc_label.py ./data/train/labelTxt/ ./data/train/Annotations/ ./data/train/ 在这里,“voc_label.py”是一个Python脚本名,将第一个参数设置为LabelImg生成的xml文件所在的目录,将第二个参数设置为标签文件所在的目录,将第三个参数设置为生成的yolo格式标签文件的输出目录。执行成功后,将在输出目录中生成输入目录中的xml文件对应的yolo格式标签文件。 2. 将yolo格式标签文件转换voc格式标签文件 将yolo格式标签文件转换voc格式标签文件需要执行以下步骤: (1)创建一个xml文件并编写模板。在标签文件所在的目录下,创建一个xml文件并编写一个基本模板。在该模板中,应将标签文件的基本信息包括图像名称、标注区域的坐标、类别等一一列举出来。 (2)通过脚本来转换标签文件。执行以下命令来转换标签文件: python yolo_label.py train.txt 在这里,“train.txt”是一个包含所有标签路径的txt文件。执行成功后,将在标签文件所在目录中生成输入目录中的yolo格式标签文件对应的voc格式标签文件。 总之,无论是将voc格式标签文件转换yolo格式标签文件,还是将yolo格式标签文件转换voc格式标签文件,都可以通过执行特定的脚本来完成。这些脚本可以轻松地将标签文件从一种格式转换为另一种格式,这对于计算机视觉应用程序的训练和测试来说是非常有用的。 ### 回答3: LabelImg是一款常用的图像标注软件,VOC格式标签文件是其默认输出格式之一。而YOLO则是另一种常见的目标检测算法,其标注格式txt文件。在实际使用中,我们有需要将LabelImg标注生成的VOC格式xml文件转换YOLO格式txt文件,或者反过来。下面我们将介绍如何进行这一转换。 1. VOC格式xml文件转换YOLO格式txt文件 首先,我们需要明确VOC标签文件中的类别名称和类别编号。以VOC格式xml标签文件为例,打开其中一个文件,我们可以看到类别名称通常被定义为类别列表中的一个节点。而类别编号则是在每个object节点中定义的。可以参考下面的片段: ``` <annotation> <folder>images</folder> <filename>image1.jpg</filename> <source> ... </source> <size> <width>1280</width> <height>720</height> <depth>3</depth> </size> <segmented>0</segmented> <object> <name>cat</name> <pose>Unspecified</pose> <truncated>0</truncated> <difficult>0</difficult> <bndbox> <xmin>438</xmin> <ymin>88</ymin> <xmax>821</xmax> <ymax>510</ymax> </bndbox> </object> ... </annotation> ``` 观察上面片段中的`<name>`标签,我们可以发现该标注文件的类别名称为"cat"。而在`<object>`节点中,出现了一个`<bndbox>`节点,其中包含了四个属性值,分别表示该目标的左上角坐标(xmin, ymin)和右下角坐标(xmax, ymax)。这些坐标值的单位都是像素。 有了这些信息之后,我们就可以将VOC格式xml文件转换YOLO格式txt文件了。具体步骤如下: 1)读取VOC格式xml文件,并提取出目标的类别、左上角坐标、右下角坐标等信息。 2)按照YOLO格式要求,将坐标值归一化到[0, 1]的范围内,并计算出中心点坐标和目标宽高。 3)将归一化后的坐标值和类别编号写入txt文件。每行文件格式如下: ``` <class_id> <x> <y> <width> <height> ``` 其中class_id为类别编号,x和y是目标中心点坐标的归一化值,width和height是目标宽高的归一化值。 下面是实现该转换过程的Python代码示例: ```python import os import xml.etree.ElementTree as ET def convert_voc_to_yolo(voc_file, classes, out_file): """ Convert a VOC format label file to YOLO format. voc_file: path to the VOC format xml file. classes: a dictionary mapping class names to class indices. out_file: path to save the converted YOLO format txt file. """ tree = ET.parse(voc_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) with open(out_file, 'w') as f: for obj in root.iter('object'): cls_name = obj.find('name').text if cls_name not in classes: continue cls_id = classes[cls_name] bbox = obj.find('bndbox') xmin = int(bbox.find('xmin').text) ymin = int(bbox.find('ymin').text) xmax = int(bbox.find('xmax').text) ymax = int(bbox.find('ymax').text) x = (xmin + xmax) / 2 / w y = (ymin + ymax) / 2 / h width = (xmax - xmin) / w height = (ymax - ymin) / h f.write(f'{cls_id} {x:.6f} {y:.6f} {width:.6f} {height:.6f}\n') classes = {'cat': 0, 'dog': 1, ...} voc_file = 'path/to/voc.xml' out_file = 'path/to/yolo.txt' convert_voc_to_yolo(voc_file, classes, out_file) ``` 2. YOLO格式txt文件转换VOC格式xml文件 上面的过程相反,我们同样需要先把类别名称和类别编号对应起来。由于YOLOtxt标注文件中只保存了图片中的目标的位置及其类别信息,所以在进行转换需要额外对目标进行分类。 具体步骤如下: 1)读入YOLO格式txt文件,提取出其中的目标位置信息以及类别编号。 2)将坐标值从归一化范围转换为像素范围。 3)按照VOC格式的要求,将目标的类别、左上角坐标、右下角坐标等信息写入xml文件。 下面是代码示例: ```python import os import xml.etree.cElementTree as ET def convert_yolo_to_voc(yolo_file, classes, img_file, out_dir): """ Convert a YOLO format label file to VOC format yolo_file: path to the YOLO format txt file. classes: a dictionary mapping class names to class indices. img_file: path to the image file. out_dir: the output directory to save the VOC format xml file. """ root = ET.Element('annotation') folder = ET.SubElement(root, 'folder') folder.text = os.path.basename(os.path.dirname(img_file)) filename = ET.SubElement(root, 'filename') filename.text = os.path.basename(img_file) source = ET.SubElement(root, 'source') database = ET.SubElement(source, 'database') database.text = 'Unknown' size = ET.SubElement(root, 'size') img_w, img_h, img_c = cv2.imread(img_file).shape width = ET.SubElement(size, 'width') width.text = str(img_w) height = ET.SubElement(size, 'height') height.text = str(img_h) depth = ET.SubElement(size, 'depth') depth.text = str(img_c) segmented = ET.SubElement(root, 'segmented') segmented.text = '0' with open(yolo_file, 'r') as f: for line in f.readlines(): parts = line.strip().split() cls_id = int(parts[0]) if cls_id not in classes: continue cls_name = classes[cls_id] x, y, width_norm, height_norm = map(float, parts[1:]) x1 = int((x - width_norm/2) * img_w) y1 = int((y - height_norm/2) * img_h) x2 = int(x1 + width_norm * img_w) y2 = int(y1 + height_norm * img_h) object_ = ET.SubElement(root, 'object') name = ET.SubElement(object_, 'name') name.text = cls_name pose = ET.SubElement(object_, 'pose') pose.text = 'Unspecified' truncated = ET.SubElement(object_, 'truncated') truncated.text = '0' difficult = ET.SubElement(object_, 'difficult') difficult.text = '0' bndbox = ET.SubElement(object_, 'bndbox') xmin = ET.SubElement(bndbox, 'xmin') xmin.text = str(x1) ymin = ET.SubElement(bndbox, 'ymin') ymin.text = str(y1) xmax = ET.SubElement(bndbox, 'xmax') xmax.text = str(x2) ymax = ET.SubElement(bndbox, 'ymax') ymax.text = str(y2) out_xml_file = os.path.join(out_dir, os.path.splitext(os.path.basename(yolo_file))[0] + '.xml') tree = ET.ElementTree(root) tree.write(out_xml_file) classes = {0: 'cat', 1: 'dog', ...} yolo_file = 'path/to/yolo.txt' img_file = 'path/to/image.jpg' out_dir = 'path/to/output' convert_yolo_to_voc(yolo_file, classes, img_file, out_dir) ``` 总之,在目标检测任务中,标注数据的格式转换是一个常见的问题。掌握对不同格式数据的相互转换,有利于提高我们的工作效率,也能为实现更加复杂和灵活的目标检测任务提供便利。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值