什么是傅里叶变换

冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。

 
傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样, 傅立叶变换使我们能通过频率成分来分析一个函数。
 
图像傅立叶变换的物理意义
 
图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数
 
傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰
 
另外我还想说明以下几点:
 
1、图像经过二维傅立叶变换后,其变换系数矩阵表明:
 
若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。
2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)
### 回答1: 傅里叶变换是一种数学工具,用于将一个函数从时间域转换到频率域。它可以将一个函数表示成一系列复指数函数的组合,并且可以分解一个函数为其频率成分的和。傅里叶变换在信号处理、图像处理、通信和物理等领域有着广泛的应用。 在信号处理中,傅里叶变换可以将时域信号转换为频域信号,这样就可以分析信号中不同频率的成分。通过傅里叶变换,我们可以得到信号的频谱,即信号中各个频率的振幅和相位信息。 傅里叶变换具有线性性质,可以对有限长度的周期信号和无限长的非周期信号进行变换。它可以将信号从时域转换到频域,也可以将信号从频域转回时域。 在计算机科学领域,傅里叶变换的快速算法(FFT)被广泛使用,用于将信号进行频域分析和处理。例如,通过傅里叶变换,可以对音频进行频谱分析,以实现音频信号的降噪或音频频谱的可视化。 总之,傅里叶变换是一个重要的数学工具,可以将一个函数从时域转换到频域,以便于分析和处理信号。在各个领域都有着广泛的应用,对于理解和处理信号和波动现象具有重要意义。 ### 回答2: 傅里叶变换是一种将一个函数在时域(时间域)中的表达转换为频域(频率域)中的表达的数学工具。它是以法国数学家傅里叶命名的,广泛应用于信号处理、图像处理、音频处理等领域。 傅里叶变换可以将一个连续或离散函数表示为若干个正弦和余弦函数的和,通常用复数形式表示。通过傅里叶变换,我们可以将一个信号分解为不同频率的成分,并了解每个频率的幅度和相位信息。 对于连续函数,傅里叶变换可以用积分的形式表示;对于离散函数,傅里叶变换则用离散的形式表示。无论是连续还是离散的傅里叶变换,都有相应的逆变换用于恢复原始信号。 傅里叶变换的应用十分广泛。在信号处理领域,它可以用于滤波、频谱分析、噪声消除等。在图像处理领域,傅里叶变换可以用于图像的频域滤波、图像去噪等。在音频处理领域,傅里叶变换可以用于音频信号的频谱分析和音乐合成。 傅里叶变换在数学和工程领域中具有重要的地位,它为我们理解信号和波动现象提供了有力的工具。掌握傅里叶变换的原理和应用,对于从事相关领域的研究和工作人员来说是十分必要的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值