第一章 傅立叶变换

Fourier变换

1.1 Fourier积分

若一个以 T T T为周期的函数 f T ( t ) f_T(t) fT(t)可展成 F o u r i e r Fourier Fourier级数,在 f T ( t ) f_T(t) fT(t)的连续点处,级数的三角式为
f T ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n ω t + b n sin ⁡ n ω t ) (1.1) {f_T(t)={\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos n\omega t+b_n \sin n\omega t)}}\tag{1.1} fT(t)=2a0+n=1(ancosnωt+bnsinnωt)(1.1)
其中
   ω = 2 π T a n = 2 T ∫ − T 2 T 2 f T ( t ) cos ⁡ n ω t   d t b n = 2 T ∫ − T 2 T 2 f T ( t ) sin ⁡ n ω t   d t \begin{aligned} \omega & =\frac{2\pi}{T} \\a_n & =\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}{f_T(t)\cos n\omega t}\,{\rm d}t \\b_n&=\frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} {f_T(t)\sin n\omega t}\,{\rm d}t\end{aligned} ωanbn=T2π=T22T2TfT(t)cosnωtdt=T22T2TfT(t)sinnωtdt

复指数形式

利用 E u l e r Euler Euler公式
cos ⁡ φ = e i φ + e − i φ 2 sin ⁡ φ = e i φ − e − i φ 2 i = − i e i φ − e − i φ 2 \begin{aligned}\cos\varphi&=\frac{e^{i\varphi}+e^{-i\varphi}}{2}\\ \sin\varphi&= \frac{e^{i\varphi}-e^{-i\varphi}}{2i}=-i \frac{e^{i\varphi}-e^{-i\varphi}}{2}\end{aligned} cosφsinφ=2eiφ+eiφ=2ieiφeiφ=i2eiφeiφ
代入公式 ( 1.1 ) (1.1) (1.1)

f T ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n e i n ω t + e − i n ω t 2 + b n e i n ω t − e − i n ω t 2 i ] = a 0 2 + ∑ n = 1 ∞ [ a n − i b n 2 e i n w t + a n + i b n 2 e − i n ω t ] \begin{aligned} f_{T}(t) &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \frac{e^{i n\omega t}+e^{-i n \omega t}}{2}+b_{n} \frac{e^{i n\omega t}-e^{-i n\omega t}}{2 i}\right] \\ &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[\frac{a_{n}-i b_{n}}{2} e^{i n w t}+\frac{a_{n}+i b_{n}}{2} e^{-i n\omega t} \right] \end{aligned} fT(t)=2a0+n=1[an2einωt+einωt+bn2ieinωteinωt]=2a0+n=1[2anibneinwt+2an+ibneinωt]

c 0 = a 0 2 = 1 T ∫ − T 2 T 2 f T ( t )   d t c_{0}=\frac{a_{0}}{2}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_{T}(t) \, {\rm d} t c0=2a0=T12T2TfT(t)dt
c n = a n − i b n 2 = 1 T [ ∫ − T 2 T 2 f T ( t ) cos ⁡ n ω t   d t − i ∫ − T 2 T 2 f T ( t ) sin ⁡ n ω t   d t ] . = 1 T ∫ − T 2 T 2 f T ( t ) e − i n ω t   d t \begin{aligned}c_{n}&=\frac{a_{n}-i b_{n}}{2} \\&=\frac{1}{T}\left[\int_{-\frac{T}{2}}^{\frac{T}{2}} f_{T}(t) \cos n \omega t \, {\rm d} t-i \int_{-\frac{T}{2}}^{\frac{T}{2}} f_{T}(t) \sin n\omega t \, {\rm d} t\right]. \\&=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_{T}(t) e^{-i n \omega t} \, {\rm d} t\end{aligned} cn=2anibn=T1[2T2TfT(t)cosnωtdti2T2TfT(t)sinnωtdt].=T12T2TfT(t)einωtdt
c − n = a n + i b n 2 = 1 T ∫ − T 2 T 2 f T ( t ) e i n ω t   d t c_{-n}=\frac{a_{n}+i b_{n}}{2}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_{T}(t) e^{i n \omega t} \,{\rm d} t cn=2an+ibn=T12T2TfT(t)einωtdt
合写为
c n = 1 T ∫ − T 2 T 2 f T ( t ) e − i n ω t   d t c_{n}= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_{T}(t) e^{-i n \omega t} \,{\rm d}t cn=T12T2TfT(t)einωtdt
若令
ω n = n ω \omega_n=n\omega ωn=nω
( 1.1 ) (1.1) (1.1)可写为

f T ( t ) = c 0 + ∑ n = 1 ∞ [ c n e i ω n t + c − n e − i ω n t ] = ∑ n = − ∞ + ∞ c n e i ω n t o r = 1 T ∑ n = − ∞ + ∞ [ ∫ − T 2 T 2 f T ( τ ) e i ω n τ   d τ ] e i ω n t (1.2) \begin{aligned} f_{T}(t) &=c_{0}+\sum_{n=1}^{\infty}\left[c_{n} e^{i \omega_{n} t}+c_{-n} e^{-i \omega _n t}\right] \\ &=\sum_{n=-\infty}^{+\infty} c_{n} e^{i \omega _n t} \\ or &=\frac{1}{T} \sum_{n=-\infty}^{+\infty}\left[\int_{-\frac{T}{2}}^{\frac{T}{2}} f_{T}(\tau) e^{i \omega_{n} \tau} \,{\rm d} \tau\right] e^{i \omega_{n} t} \end{aligned}\tag{1.2} fT(t)or=c0+n=1[cneiωnt+cneiωnt]=n=+cneiωnt=T1n=+[2T2TfT(τ)eiωnτdτ]eiωnt(1.2)
对于非周期函数的展开问题,任何一个非周期函数 f ( t ) f(t) f(t)可看作某个周期函数 f T ( t ) f_T(t) fT(t) T → + ∞ T\rightarrow +\infty T+时转化而来的,即

lim ⁡ T → + ∞ f T ( t ) = f ( t ) \lim _{T \rightarrow+\infty} f_{T}(t)=f(t) T+limfT(t)=f(t)

f ( t ) = lim ⁡ T → + ∞ 1 T ∑ n = − ∞ + ∞ [ ∫ T 2 T 2 f T ( τ ) e − i ω n τ   d τ ] e i ω n t f(t)=\lim _{T \rightarrow+\infty} \frac{1}{T} \sum_{n=-\infty}^{+\infty}\left[\int_{\frac{T}{2}}^{\frac{T}{2}} f_{T}(\tau) e^{-i \omega_{n} \tau} \,{\rm d}\tau\right] e^{i \omega_{n} t} f(t)=T+limT1n=+[2T2TfT(τ)eiωnτdτ]eiωnt
ω = 2 T , ω n = n ω . \omega=\frac{2}{T},\omega_n=n\omega. ω=T2,ωn=nω.

Δ ω n = ω n − ω n − 1 = 2 π T  or  T = 2 π Δ ω n \Delta \omega_{n}=\omega_{n}-\omega_{n-1}=\frac{2\pi}{T} \text { or } T=\frac{2 \pi}{\Delta \omega_{n}} Δωn=ωnωn1=T2π or T=Δωn2π
f ( t ) f(t) f(t)可改写为

f ( t ) = lim ⁡ Δ ω n → 0 1 2 π ∑ n = − ∞ + ∞ [ ∫ − T 2 T 2 f T ( τ ) e − i ω τ   d τ ] e i ω n t Δ ω n (1.3) f(t)=\lim _{\Delta \omega_{n}\rightarrow 0} \frac{1}{2 \pi} \sum_{n=-\infty}^{+\infty}\left[\int_{-\frac{T}{2}}^{\frac{T}{2}} f_{T}(\tau) e^{-i \omega \tau} \,{\rm d} \tau\right] e^{i \omega_{n} t} \Delta \omega_{n}\tag{1.3} f(t)=Δωn0lim2π1n=+[2T2TfT(τ)eiωτdτ]eiωntΔωn(1.3)
Δ ω n → 0 \Delta \omega_n \rightarrow 0 Δωn0 T → + ∞ T\rightarrow +\infty T+时,有

f ( t ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) e − i ω τ   d τ ] e i ω t   d ω f(t)=\frac{1}{2\pi} \int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} f(\tau) e^{-i \omega \tau} \,{\rm d} \tau\right] e^{i \omega t} \,{\rm d} \omega f(t)=2π1+[+f(τ)eiωτdτ]eiωtdω
上式只是从 ( 1.3 ) (1.3) (1.3)式的右端从形式上推出来的,不严格。下面为非周期函数 f ( t ) f(t) f(t) F o u r i e r Fourier Fourier积分公式的条件。

Fourier积分定理

f ( t ) f(t) f(t) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上满足下列条件

  1. f ( t ) f(t) f(t)在任一有限区间上满足 D i r i c h l e t Dirichlet Dirichlet条件
  2. f ( t ) f(t) f(t)在无限区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上绝对可积, ( ∫ − ∞ + ∞ ∣ f ( t ) ∣   d t 收 敛 ) (\int_{-\infty}^{+\infty}{\left|{f(t)}\right|}\,{\rm d}t收敛) (+f(t)dt),则有

f ( t ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) e − i ω τ   d τ ] e i ω t   d ω (1.4) f(t)=\frac{1}{2\pi} \int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} f(\tau) e^{-i \omega \tau} \,{\rm d} \tau\right] e^{i \omega t} \,{\rm d} \omega\tag{1.4} f(t)=2π1+[+f(τ)eiωτdτ]eiωtdω(1.4)
成立, f ( t ) f(t) f(t)在间断点处,以 f ( t + 0 ) + f ( t − 0 ) 2 \frac{f(t+0)+f(t-0)}{2} 2f(t+0)+f(t0)来代替。

Fourier积分公式的三角形式

f ( t ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) e − i ω τ   d τ ] e i ω t   d ω = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) e i ω ( t − τ )   d τ ]   d ω = ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) cos ⁡ ω ( t − τ )   d τ + i ∫ − ∞ + ∞ f ( τ ) sin ⁡ ω ( t − τ )   d τ ]   d ω \begin{aligned} f(t)&=\frac{1}{2\pi}\int_{-\infty}^{+\infty}{\left[\int_{-\infty}^{+\infty}{f(\tau)e^{-i\omega\tau}}\,{\rm d}\tau \right]e^{i\omega t}}\,{\rm d}\omega \\ &= \frac{1}{2\pi}\int_{-\infty}^{+\infty}{\left[\int_{-\infty}^{+\infty}{f(\tau)e^{i\omega(t-\tau)}}\,{\rm d}\tau \right]}\,{\rm d}\omega \\& =\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} f(\tau) \cos \omega(t-\tau) \,{\rm d} \tau+i \int_{-\infty}^{+\infty} f(\tau) \sin \omega(t-\tau) \,{\rm d} \tau\right] \,{\rm d} \omega \end{aligned} f(t)=2π1+[+f(τ)eiωτdτ]eiωtdω=2π1+[+f(τ)eiω(tτ)dτ]dω=+[+f(τ)cosω(tτ)dτ+i+f(τ)sinω(tτ)dτ]dω
∫ − ∞ + ∞ f ( τ ) sin ⁡ ω ( t − τ )   d τ \int_{-\infty}^{+\infty} f(\tau) \sin \omega(t-\tau) \,{\rm d} \tau +f(τ)sinω(tτ)dτ ω \omega ω 的奇函数,就有
∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) sin ⁡ ω ( t − τ )   d τ ]   d ω = 0 \int_{-\infty}^{+\infty}{\left[ \int_{-\infty}^{+\infty} f(\tau) \sin \omega(t-\tau) \,{\rm d} \tau\right]}\,{\rm d}\omega=0 +[+f(τ)sinω(tτ)dτ]dω=0
f ( t ) f(t) f(t)可表示为

f ( t ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) cos ⁡ ω ( t − τ )   d τ ]   d ω (1.5) f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}{\left[ \int_{-\infty}^{+\infty} f(\tau) \cos\omega(t-\tau) \,{\rm d} \tau\right]}\,{\rm d}\omega\tag{1.5} f(t)=2π1+[+f(τ)cosω(tτ)dτ]dω(1.5)

而积分
∫ − ∞ + ∞ f ( τ ) cos ⁡ ω ( t − τ )   d τ \int_{-\infty}^{+\infty} f(\tau) \cos\omega(t-\tau) \,{\rm d} \tau +f(τ)cosω(tτ)dτ
ω \omega ω的偶函数。 ( 1.5 ) (1.5) (1.5) 又可写为
f ( t ) = 1 π ∫ 0 + ∞ [ ∫ − ∞ + ∞ f ( τ ) cos ⁡ ω ( t − τ )   d τ ]   d ω (1.6) f(t)=\frac{1}{\pi}\int_{0}^{+\infty}{\left[ \int_{-\infty}^{+\infty} f(\tau) \cos\omega(t-\tau) \,{\rm d} \tau\right]}\,{\rm d}\omega\tag{1.6} f(t)=π10+[+f(τ)cosω(tτ)dτ]dω(1.6)
f ( t ) f(t) f(t)为奇函数时
f ( t ) = 2 π ∫ 0 + ∞ [ ∫ 0 + ∞ f ( τ ) sin ⁡ ω τ   d τ ] sin ⁡ ω t   d ω (1.7) f(t)=\frac{2}{\pi}\int_{0}^{+\infty}{\left[ \int_{0}^{+\infty} f(\tau) \sin\omega \tau \,{\rm d} \tau\right]}\sin \omega t\,{\rm d}\omega\tag{1.7} f(t)=π20+[0+f(τ)sinωτdτ]sinωtdω(1.7)
f ( t ) f(t) f(t)为偶函数时
f ( t ) = 2 π ∫ 0 + ∞ [ ∫ 0 + ∞ f ( τ ) cos ⁡ ω τ   d τ ] cos ⁡ ω t   d ω (1.8) f(t)=\frac{2}{\pi}\int_{0}^{+\infty}{\left[ \int_{0}^{+\infty} f(\tau) \cos\omega \tau \,{\rm d} \tau\right]}\cos \omega t\,{\rm d}\omega\tag{1.8} f(t)=π20+[0+f(τ)cosωτdτ]cosωtdω(1.8)
分别称作 F o u r i e r Fourier Fourier正弦积分公式和 F o u r i e r Fourier Fourier余弦积分公式

Dirichlet积分

∫ 0 + ∞ sin ⁡ ω ω   d ω = π 2 \int_{0}^{+\infty}{\frac{\sin\omega}{\omega}}\,{\rm d}\omega=\frac{\pi}{2} 0+ωsinωdω=2π

1.2 Fourier变换

f ( t ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) e − i ω τ   d τ ] e i ω t   d ω f(t)=\frac{1}{2\pi} \int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} f(\tau) e^{-i \omega \tau} \,{\rm d} \tau\right] e^{i \omega t} \,{\rm d} \omega f(t)=2π1+[+f(τ)eiωτdτ]eiωtdω出发,有
F ( ω ) = ∫ − ∞ + ∞ f ( t ) e − i ω t   d t (1.9) F(\omega)=\int_{-\infty}^{+\infty}{f(t)e^{-i\omega t}}\,{\rm d}t \tag{1.9} F(ω)=+f(t)eiωtdt(1.9)
f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i ω t   d ω (1.10) f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}{F(\omega)e^{i\omega t}} \,{\rm d}\omega \tag{1.10} f(t)=2π1+F(ω)eiωtdω(1.10)
f ( x ) f(x) f(x) F ( ω ) F(\omega) F(ω)通过指定的积分运算可以相互表达, ( 1.9 ) (1.9) (1.9)式叫做 f ( t ) f(t) f(t)的变换式,可记为
F ( ω ) = F [ f ( t ) ] F(\omega)=\mathscr{ F} \left[f(t)\right] F(ω)=F[f(t)]
F ( ω ) F(\omega) F(ω)叫做 f ( t ) f(t) f(t)的象函数, ( 1.10 ) (1.10) (1.10)叫做 F ( ω ) F(\omega) F(ω) F o u r i e r Fourier Fourier变换式,记为
f ( t ) = F − 1 [ F ( ω ) ] f(t)=\mathscr{F}^{-1}[F(\omega)] f(t)=F1[F(ω)]
f ( t ) f(t) f(t)叫做 F ( ω ) F(\omega) F(ω)的象原函数。
f ( t ) f(t) f(t)为奇函数时,从式 ( 1.1 ) (1.1) (1.1)出发,则
F s ( ω ) = ∫ 0 + ∞ f ( t ) sin ⁡ ω t   d t (1.11) F_s(\omega)=\int_{0}^{+\infty}{f(t)\sin\omega t\,{\rm d}t}\tag{1.11} Fs(ω)=0+f(t)sinωtdt(1.11)
叫做 f ( t ) f(t) f(t) F o u r i e r Fourier Fourier正弦变换式
F s ( ω ) = F s [ f ( t ) ] F_s(\omega)=\mathscr{ F}_s \left[f(t)\right] Fs(ω)=Fs[f(t)]

f ( t ) = 2 π ∫ 0 + ∞ F s ( ω ) sin ⁡ ω t   d ω (1.12) f(t)=\frac{2}{\pi}\int_{0}^{+\infty}{F_s(\omega)\sin \omega t}\,{\rm d}\omega\tag{1.12} f(t)=π20+Fs(ω)sinωtdω(1.12)
叫做 f ( t ) f(t) f(t) F o u r i e r Fourier Fourier正弦逆变换式,即
f ( t ) = F s − 1 [ F s ( ω ) ] f(t)=\mathscr{ F}_s^{-1}\left[F_s(\omega)\right] f(t)=Fs1[Fs(ω)]
f ( t ) f(t) f(t)为偶函数时
F c ( ω ) = ∫ 0 + ∞ f ( t ) cos ⁡ ω t   d t F_c(\omega)=\int_{0}^{+\infty}{f(t)\cos\omega t}\,{\rm d}t Fc(ω)=0+f(t)cosωtdt
叫做 f ( t ) f(t) f(t) F o u r i e r Fourier Fourier余弦变换式

F c ( ω ) = F c [ f ( t ) ] F_c(\omega)=\mathscr{ F}_c \left[f(t)\right] Fc(ω)=Fc[f(t)]

f ( t ) = 2 π ∫ 0 + ∞ F c ( ω ) cos ⁡ ω t   d ω f(t)=\frac{2}{\pi}\int_{0}^{+\infty}{F_c(\omega)\cos\omega t}\,{\rm d}\omega f(t)=π20+Fc(ω)cosωtdω
叫做 f ( t ) f(t) f(t) F o u r i e r Fourier Fourier余弦逆变换式

f ( t ) = F c − 1 [ F c ( ω ) ] f(t)=\mathscr{ F}_c^{-1}\left[F_c(\omega)\right] f(t)=Fc1[Fc(ω)]

1.3 Fourier变换的性质


1. 线性性质
F 1 ( ω ) = F [ f 1 ( t ) ] F_1(\omega)=\mathscr{ F}\left[f_1(t)\right] F1(ω)=F[f1(t)] F 2 ( ω ) = F [ f 2 ( t ) ] F_2(\omega)=\mathscr{ F}\left[f_2(t)\right] F2(ω)=F[f2(t)] α \alpha α β \beta β是常数,则
F [ α f 1 ( t ) + β f 2 ( t ) ] = α F 1 ( ω ) + β F 2 ( ω ) (1.13) \mathscr{F}\left[\alpha f_1(t)+\beta f_2(t)\right]=\alpha F_1(\omega)+\beta F_2(\omega)\tag{1.13} F[αf1(t)+βf2(t)]=αF1(ω)+βF2(ω)(1.13)
证明
F [ α f 1 ( t ) + β f 2 ( t ) ] = ∫ − ∞ + ∞ [ α f 1 ( x ) + β f 2 ( x ) ] e − i ω x   b x = α ∫ − ∞ + ∞ f 1 ( x ) e − i ω x   d x + β ∫ − ∞ + ∞ f 2 ( x ) e − i ω x   d x = α F [ f 1 ( x ) ] + β F [ f 2 ( x ) ] \begin{aligned} \mathscr{ F}\left[\alpha f_1(t)+\beta f_2(t)\right]&=\int_{-\infty}^{+\infty}{\left[\alpha f_1(x)+\beta f_2(x)\right]e^{-i \omega x}}\,{\rm b}x \\&=\alpha \int_{-\infty}^{+\infty}{f_1(x)e^{-i\omega x}}\,{\rm d}x +\beta \int_{-\infty}^{+\infty}{f_2(x)e^{-i\omega x}}\,{\rm d}x \\&=\alpha \mathscr{ F}\left[f_1(x)\right]+\beta \mathscr{F}\left[f_2(x)\right] \end{aligned} F[αf1(t)+βf2(t)]=+[αf1(x)+βf2(x)]eiωxbx=α+f1(x)eiωxdx+β+f2(x)eiωxdx=αF[f1(x)]+βF[f2(x)]
F o u r i e r Fourier Fourier逆变换也具有类似的线性性质
F − 1 [ α F 1 ( ω ) + β F 2 ( ω ) ] = α f 1 ( t ) + β f 2 ( t ) (1.14) \mathscr{ F}^{-1}\left[\alpha F_1(\omega)+\beta F_2(\omega)\right]=\alpha f_1(t)+\beta f_2(t) \tag{1.14} F1[αF1(ω)+βF2(ω)]=αf1(t)+βf2(t)(1.14)

2. 位移性质
F [ f ( t ± t 0 ) ] = e ± i ω t 0 F [ f ( t ) ] (1.15) \mathscr{F}\left[f(t \pm t_0)\right]=e^{\pm i \omega t_0}\mathscr{F}\left[f(t)\right]\tag{1.15} F[f(t±t0)]=e±iωt0F[f(t)](1.15)
证明

F [ f ( t ± t 0 ) ] = ∫ − ∞ + ∞ f ( t ± t 0 ) e − i ω t   d t = ∫ − ∞ + ∞ f ( u ) e i ω ( − u ± t 0 )   d u = e ± i ω t 0 ∫ − ∞ + ∞ f ( u ) e − i ω u   d u = e ± i ω t 0 F [ f ( t ) ] \begin{aligned} \mathscr{ F}[f(t \pm t_0)] &=\int_{-\infty}^{+\infty} f(t \pm t_0)e^{-i\omega t} \,{\rm d} t \\ &=\int_{-\infty}^{+\infty} {f(u)e^{i \omega(-u \pm t_0)}} \,{\rm d} u \\ &=e^{\pm i \omega t_{0}} \int_{-\infty}^{+\infty}{f(u)e^{-i \omega u}} \,{\rm d} u \\ &=e^{\pm i\omega t_{0}} \mathscr{ F}\left[f(t)\right] \end{aligned} F[f(t±t0)]=+f(t±t0)eiωtdt=+f(u)eiω(u±t0)du=e±iωt0+f(u)eiωudu=e±iωt0F[f(t)]
同样, F o u r i e r Fourier Fourier逆变换亦具有类似的位移性质,即
F − 1 [ F ( ω ∓ ω 0 ) ] = f ( t ) e ± i ω 0 t (1.16) \mathscr{ F}^{-1}\left[F(\omega \mp \omega _0)\right]=f(t)e^{\pm i \omega _0 t}\tag{1.16} F1[F(ωω0)]=f(t)e±iω0t(1.16)


3. 微分性质

  1. 如果 f ( t ) f(t) f(t) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上连续或只有有限个可去间断点,且当 ∣ t ∣ → + ∞ |t|\rightarrow +\infty t+时, f ( t ) → 0 f(t)\rightarrow 0 f(t)0,则
    F [ f ′ ( t ) ] = i ω F [ f ( t ) ] (1.17) \mathscr{ F}\left[f^{\prime}(t)\right]=i\omega \mathscr{F}\left[f(t)\right]\tag{1.17} F[f(t)]=iωF[f(t)](1.17)
    证明
    F [ f ′ ( t ) ] = ∫ − ∞ + ∞ f ′ ( t ) e − i ω t   d t = f ( t ) e − i ω t ∣ − ∞ + ∞ + i ω ∫ − ∞ + ∞ f ( t ) e − i ω t   d t = i ω F [ f ( t ) ] \begin{aligned} \mathscr{ F}\left[f^{\prime}(t)\right]&=\int_{-\infty}^{+\infty}{f^{\prime}(t)e^{-i\omega t}}\,{\rm d}t \\ &=\left. f(t)e^{-i \omega t}\right|_{-\infty}^{+\infty}+i \omega \int_{-\infty}^{+\infty}{f(t)e^{-i \omega t}}\,{\rm d}t \\ &= i\omega \mathscr{ F}\left[f(t)\right] \end{aligned} F[f(t)]=+f(t)eiωtdt=f(t)eiωt++iω+f(t)eiωtdt=iωF[f(t)]
    推论
    f ( k ) ( t ) f^{(k)}(t) f(k)(t) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上连续或只有有限个可去间断点,且 lim ⁡ t → + ∞ f ( k ) ( t ) = 0 \lim\limits_{t\to+\infty}{f^{(k)}(t)}=0 t+limf(k)(t)=0 k = 0 , 1 , 2 , ⋯   , n − 1 k=0,1,2,\cdots,n-1 k=0,1,2,,n1,则有
    F [ f ( n ) ( t ) ] = ( i ω ) n F [ f ( t ) ] (1.18) \mathscr{ F}\left[f^{(n)}(t)\right]=(i\omega)^{n}\mathscr{ F}\left[f(t)\right]\tag{1.18} F[f(n)(t)]=(iω)nF[f(t)](1.18)

  2. F [ f ( t ) ] = F ( ω ) \mathscr{ F}\left[f(t)\right]=F(\omega) F[f(t)]=F(ω),则
    d F ( ω ) d ω = F [ − i t f ( t ) ] (1.19) \frac{{\rm d}F(\omega)}{{\rm d}\omega}=\mathscr{ F}\left[-itf(t)\right]\tag{1.19} dωdF(ω)=F[itf(t)](1.19)
    证明

d d ω F ( ω ) = d d ω ∫ − ∞ + ∞ f ( t ) e − i ω t   d t = ∫ − ∞ + ∞ f ( t ) d d ω e − i ω t   d t = ∫ − ∞ + ∞ − i t f ( t ) e − i ω t   d t = F [ − i t f ( t ) ] \begin{aligned} \frac{\rm d}{{\rm d} \omega} F(\omega) &=\frac{\rm d}{{\rm d} \omega} \int_{-\infty}^{+\infty} f(t) e^{-i \omega t} \,{\rm d} t \\ &=\int_{-\infty}^{+\infty} f(t) \frac{\rm d}{{\rm d} \omega} e^{-i \omega t} \,{\rm d} t \\ &=\int_{-\infty}^{+\infty}-i t f(t) e^{-i \omega t} \,{\rm d} t \\ &=\mathscr{ F}[-i t f(t)] \end{aligned} dωdF(ω)=dωd+f(t)eiωtdt=+f(t)dωdeiωtdt=+itf(t)eiωtdt=F[itf(t)]
一般地,有

d n d ω n F ( ω ) = ( − i ) n F [ t n f ( t ) ] (1.20) \frac{{\rm d}^{n}}{{\rm d} \omega^{n}} F(\omega)=(-i)^{n} \mathscr{ F}\left[t^{n} f(t)\right]\tag{1.20} dωndnF(ω)=(i)nF[tnf(t)](1.20)


4. 积分性质

如果 t → + ∞ t \to +\infty t+时, g ( t ) = ∫ − ∞ t f ( t ) d t → 0 g(t)=\int_{-\infty}^{t}{f(t)}{\rm d}t \to 0 g(t)=tf(t)dt0。则
F [ ∫ − ∞ t f ( t ) d t ] = 1 i ω F [ f ( t ) ] (1.21) \mathscr{ F}\left [\int_{-\infty}^{t}{f(t)}{\rm d}t\right]=\frac{1}{i\omega}\mathscr{ F}\left[f(t)\right]\tag{1.21} F[tf(t)dt]=iω1F[f(t)](1.21)
证明
因为
d d t ∫ − ∞ t f ( t )   d t = f ( t ) \frac{{\rm d}}{{\rm d} t} \int_{-\infty}^{t} {f(t)} \,{\rm d} t=f(t) dtdtf(t)dt=f(t)
所以
F [ d d t ∫ − ∞ t f ( t )   d t ] = F [ f ( t ) ] \mathscr{ F}\left[\frac{{\rm d}}{{\rm d} t} \int_{-\infty}^{t} {f(t)} \,{\rm d} t\right]=\mathscr{ F}\left[f(t)\right] F[dtdtf(t)dt]=F[f(t)]
又根据微分性质
F [ d d t ∫ − ∞ t f ( t )   d t ] = i ω F [ ∫ − ∞ t f ( t )   d t ] \mathscr{ F}\left[\frac{{\rm d}}{{\rm d} t} \int_{-\infty}^{t} {f(t)} \,{\rm d} t\right]=i\omega\mathscr{ F}\left[\int_{-\infty}^{t} {f(t)} \,{\rm d} t \right] F[dtdtf(t)dt]=iωF[tf(t)dt]

F [ ∫ − ∞ t f ( t ) d t ] = 1 i ω F [ f ( t ) ] \mathscr{ F}\left [\int_{-\infty}^{t}{f(t)}{\rm d}t\right]=\frac{1}{i\omega}\mathscr{ F}\left[f(t)\right] F[tf(t)dt]=iω1F[f(t)]


5. 乘积性质

F 1 ( ω ) = F [ f 1 ( t ) ] F_1(\omega)=\mathscr{ F}\left[{f_1(t)}\right] F1(ω)=F[f1(t)] F 2 ( ω ) = F [ f 2 ( t ) ] F_2(\omega)=\mathscr{ F}\left[{f_2(t)}\right] F2(ω)=F[f2(t)],则

∫ − ∞ + ∞ f 1 ( t ) ‾ f 2 ( t )   d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) ‾ F 2 ( ω )   d ω ∫ − ∞ + ∞ f 1 ( t ) f 2 ( t ) ‾   d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) F 2 ( ω ) ‾   d ω } (1.22) \left.\begin{array}{l}\int _{-\infty}^{+\infty} \overline{f_1(t)} f_{2}(t)\, {\rm d} t&=\frac{1}{2\pi} \int_{-\infty}^{+\infty} \overline{F_{1}(\omega)} F_{2}(\omega) \,{\rm d} \omega \\ \int_{-\infty}^{+\infty}f_{1}(t) \overline{f_{2}(t)} \,{\rm d} t&=\frac{1}{2\pi}\int_{-\infty}^{+\infty} F_{1}(\omega) \overline{F_{2}(\omega)} \,{\rm d} \omega\end{array}\right\}\tag{1.22} +f1(t)f2(t)dt+f1(t)f2(t)dt=2π1+F1(ω)F2(ω)dω=2π1+F1(ω)F2(ω)dω}(1.22)
其中 f 1 ( t ) ‾ , f 2 ( t ) ‾ , F 1 ( ω ) ‾ , \overline{f_1(t)} ,\overline{f_2(t)}, \overline{F_1(\omega)}, f1(t),f2(t),F1(ω), F 2 ( ω ) ‾ \overline{F_2(\omega)} F2(ω)分别为 f 1 ( t ) , f 2 ( t ) , F 1 ( ω ) f_1(t),f_2(t),F_1(\omega) f1(t),f2(t),F1(ω) F 2 ( ω ) F_2(\omega) F2(ω)的共轭函数

∫ − ∞ + ∞ f 1 ( t ) ‾ f 2 ( t )   d t = ∫ − ∞ + ∞ f 1 ( t ) ‾ [ 1 2 π ∫ − ∞ + ∞ F 2 ( ω ) e i ω t   d ω ]   d t = 1 2 π ∫ − ∞ + ∞ F 2 ( w ) [ ∫ − ∞ + ∞ f 1 ( t ) ‾ e i ω t   d t ]   d ω ( 积 分 次 序 变 换 ) = 1 2 π ∫ − ∞ + ∞ F 2 ( ω ) [ ∫ − ∞ + ∞ f 1 ( t ) e − i ω t ‾   d t ] d ω = 1 2 π ∫ − ∞ + ∞ F 2 ( ω ) [ ∫ − ∞ + ∞ f 1 ( t ) e − i w t d t ‾ ]   d ω = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) ‾ F 2 ( ω )   d ω \begin{aligned} \int_{-\infty}^{+\infty} \overline {f_{1}(t)} f_{2}(t)\,{\rm d} t &= \int_{-\infty}^{+\infty} \overline {f_{1}\left(t\right)}\left[\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F_{2}(\omega) e^{i \omega t} \,{\rm d} \omega\right] \,{\rm d} t \\ &=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F_2(w)\left[\int_{-\infty}^{+\infty} \overline {f_{1}(t)} e^{i \omega t} \,{\rm d} t\right] \,{\rm d} \omega(积分次序变换) \\ &=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}F_2(\omega)\left[\int_{-\infty}^{+\infty} \overline{ f_{1}(t) e^{-i \omega t} }\,{\rm d} t\right] d \omega\\ &=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F_{2}(\omega)\left[\overline{\int_{-\infty}^{+\infty} f_1(t) e^{-i w t} d t}\right] \,{\rm d} \omega \\ &=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \overline{F_{1}(\omega)} F_{2}(\omega) \,{\rm d} \omega \end{aligned} +f1(t)f2(t)dt=+f1(t)[2π1+F2(ω)eiωtdω]dt=2π1+F2(w)[+f1(t)eiωtdt]dω()=2π1+F2(ω)[+f1(t)eiωtdt]dω=2π1+F2(ω)[+f1(t)eiwtdt]dω=2π1+F1(ω)F2(ω)dω
同理可证
∫ − ∞ + ∞ f 1 ( t ) f 2 ( t ) ‾   d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) F 2 ( ω ) ‾   d ω \int_{-\infty}^{+\infty}f_{1}(t) \overline{f_{2}(t)} \,{\rm d} t=\frac{1}{2\pi}\int_{-\infty}^{+\infty} F_{1}(\omega) \overline{F_{2}(\omega)} \,{\rm d} \omega +f1(t)f2(t)dt=2π1+F1(ω)F2(ω)dω
f 1 ( t ) , f 2 ( t ) f_1(t),f_2(t) f1(t),f2(t)为实函数,则乘积定理结论可写为

∫ − ∞ + ∞ f 1 ( t ) f 2 ( t )   d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) ‾ F 2 ( ω )   d ω = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) F 2 ( ω ) ‾   d ω (1.23) \begin{aligned} \int_{-\infty}^{+\infty} f_{1}(t) f_{2}(t) \,{\rm d} t &=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \overline{F_{1}(\omega)} F_{2}(\omega) \,{\rm d} \omega \\ &=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F_1(\omega) \overline{F_{2}(\omega)} \,{\rm d}\omega \end{aligned}\tag{1.23} +f1(t)f2(t)dt=2π1+F1(ω)F2(ω)dω=2π1+F1(ω)F2(ω)dω(1.23)


6. 能量积分( P a r s e v a l Parseval Parseval等式)

F ( ω ) = F [ f ( t ) ] F(\omega)=\mathscr{ F}\left[f(t)\right] F(ω)=F[f(t)],则有

∫ − ∞ + ∞ [ f ( t ) ] 2   d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2   d ω (1.24) \int_{-\infty}^{+\infty}[f(t)]^{2} \,{\rm d} t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|F(\omega)|^{2} \,{\rm d} \omega\tag{1.24} +[f(t)]2dt=2π1+F(ω)2dω(1.24)
f 1 ( t ) = f 2 ( t ) = f ( t ) f_1(t)=f_2(t)=f(t) f1(t)=f2(t)=f(t),则
∫ − ∞ + ∞ [ f ( t ) ] 2   d t = 1 2 π ∫ − ∞ + ∞ F ( ω ) F ( ω ) ‾   d ω = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2   d ω \begin{aligned} \int_{-\infty}^{+\infty}[f(t)]^{2} \,{\rm d} t&= \frac{1}{2 \pi} \int_{-\infty}^{+\infty}{F(\omega)\overline{F(\omega)}} \,{\rm d} \omega\\&=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|F(\omega)|^{2} \,{\rm d} \omega\end{aligned} +[f(t)]2dt=2π1+F(ω)F(ω)dω=2π1+F(ω)2dω

∫ − ∞ + ∞ sin ⁡ 2 x x 2   d x = π \int_{-\infty}^{+\infty}{\frac{\sin^2x}{x^2}}\,{\rm d}x=\pi +x2sin2xdx=π

1.4卷积与相关函数

1.4.1卷积的概念

若已知函数 f 1 ( t ) , f 2 ( t ) f_1(t),f_2(t) f1(t),f2(t),则积分
∫ − ∞ ∞ f 1 ( τ ) f 2 ( t − τ )   d τ \int_{-\infty}^{\infty}{f_1(\tau)f_2(t-\tau)}\,{\rm d}\tau f1(τ)f2(tτ)dτ
称为函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t)的卷积,记为 f 1 ( t ) ∗ f 2 ( t ) f_1(t)\ast f_2(t) f1(t)f2(t),即
∫ − ∞ ∞ f 1 ( τ ) f 2 ( t − τ )   d τ = f 1 ( t ) ∗ f 2 ( t ) (1.25) \int_{-\infty}^{\infty}{f_1(\tau)f_2(t-\tau)}\,{\rm d}\tau= f_1(t)\ast f_2(t)\tag{1.25} f1(τ)f2(tτ)dτ=f1(t)f2(t)(1.25)
卷积满足交换律和加法分配律
f 1 ( t ) ∗ f 2 ( t ) = f 2 ( t ) ∗ f 1 ( t ) f 1 ( t ) ∗ [ f 2 ( t ) + f 3 ( t ) ] = f 1 ( t ) ∗ f 2 ( t ) + f 1 ( t ) ∗ f 3 ( t ) \begin{aligned}f_1(t)\ast f_2(t)&= f_2(t)\ast f_1(t)\\f_1(t)\ast \left[f_2(t)+f_3(t)\right]&= f_1(t)\ast f_2(t) + f_1(t)\ast f_3(t) \end{aligned} f1(t)f2(t)f1(t)[f2(t)+f3(t)]=f2(t)f1(t)=f1(t)f2(t)+f1(t)f3(t)

1.4.2 卷积定理

假定 f 1 ( t ) , f 2 ( t ) f_1(t),f_2(t) f1(t),f2(t)都满足 F o u r i e r Fourier Fourier积分定理中的条件,且 F [ f 1 ( t ) ] = F 1 ( ω ) , F [ f 2 ( t ) ] = F 2 ( ω ) \mathscr{ F}\left[f_1(t)\right]=F_1(\omega), \mathscr{F}\left[f_2(t)\right]=F_2(\omega) F[f1(t)]=F1(ω),F[f2(t)]=F2(ω),则

F [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( ω ) ⋅ F 2 ( ω ) o r F − 1 [ F 1 ( ω ) + F 2 ( ω ) ] = f 1 ( t ) ∗ f 2 ( t ) } (1.26) \left.\begin{array}{l}\mathscr{ F}&\left[f_{1}(t) * f_{2}(t)\right ]&=F_{1}(\omega) \cdot F_{2}(\omega)\\or\\ \mathscr{ F}^{-1}&\left[F_{1}(\omega)+F_{2}(\omega)\right]&=f_{1}(t) \ast f_{2}(t)\end{array}\right\}\tag{1.26} ForF1[f1(t)f2(t)][F1(ω)+F2(ω)]=F1(ω)F2(ω)=f1(t)f2(t)(1.26)
证明
根据 F o u r i e r Fourier Fourier变换的定义,有

F [ f 1 ( t ) ∗ f 2 ( t ) ] = ∫ − ∞ + ∞ [ f 1 ( t ) ∗ f 2 ( t ) ] e − i ω t   d t = ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ ] e − i ω t   d t = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f 1 ( τ ) e − i ω t f 2 ( t − τ ) e − i ω ( t − τ )   d τ   d t = ∫ − ∞ + ∞ f 1 ( τ ) e − i ω τ [ ∫ − ∞ + ∞ f 2 ( t − τ ) e − i ω ( t − τ )   d t ]   d τ = F 1 ( ω ) ⋅ F 2 ( ω ) \begin{aligned} \mathscr{F}\left[ f_1\left( t \right) \ast f_2\left( t \right) \right] &=\int_{-\infty}^{+\infty}{\left[ f_1\left( t \right) \ast f_2\left( t \right) \right] e^{-i\omega t}}\,\text{d}t \\ &=\int_{-\infty}^{+\infty}{\left[ \int_{-\infty}^{+\infty}{f_1\left( \tau \right)}f_2\left( t-\tau \right) \text{d}\tau \right]}e^{-i\omega t}\,\text{d}t \\ &=\int_{-\infty}^{+\infty}{\int_{-\infty}^{+\infty}{f_1\left( \tau \right) e^{-i\omega t}f_2\left( t-\tau \right) e^{-i\omega \left( t-\tau \right)}}\,\text{d}\tau}\,\text{d}t \\ &=\int_{-\infty}^{+\infty}{f_1\left( \tau \right) \text{e}^{-i\omega \tau}\left[ \int_{-\infty}^{+\infty}{f_2\left( t-\tau \right) e^{-i\omega \left( t-\tau \right)}}\,\text{d}t \right]}\,\text{d}\tau \\ &=F_1\left( \omega \right) \cdot F_2\left( \omega \right) \end{aligned} F[f1(t)f2(t)]=+[f1(t)f2(t)]eiωtdt=+[+f1(τ)f2(tτ)dτ]eiωtdt=++f1(τ)eiωtf2(tτ)eiω(tτ)dτdt=+f1(τ)eiωτ[+f2(tτ)eiω(tτ)dt]dτ=F1(ω)F2(ω)
下式不证
F [ f 1 ( t ) ⋅ f 2 ( t ) ] = 1 2 π F 1 ( ω ) ⋅ F 2 ( ω ) (1.27) \mathscr{ F}\left[f_1(t)\cdot f_2(t)\right]=\frac{1}{2\pi}F_1(\omega)\cdot F_2(\omega) \tag{1.27} F[f1(t)f2(t)]=2π1F1(ω)F2(ω)(1.27)
推论
f k ( t ) f_k(t) fk(t)满足 F o u r i e r Fourier Fourier积分定理中的条件,且 F [ f k ( t ) ] = F k ( ω ) ( k = 1 , 2 , ⋯   , n ) \mathscr{ F}\left[f_k(t)\right]=F_k(\omega)(k=1,2,\cdots,n) F[fk(t)]=Fk(ω)(k=1,2,,n) ,则有

F [ f 1 ( t ) ∗ f 2 ( t ) ∗ ⋯ ∗ f n ( t ) ] = F 1 ( ω ) ⋅ F 2 ( ω ) ⋅ ⋯ ⋅ F n ( ω ) \mathscr{ F}\left[f_{1}(t) * f_{2}(t) * \cdots * f_{n}(t)\right]=F_{1}(\omega) \cdot F_{2}( \omega) \cdot \cdots \cdot F_n(\omega) F[f1(t)f2(t)fn(t)]=F1(ω)F2(ω)Fn(ω)

F [ f 1 ( t ) ⋅ f 2 ( t ) ⋯ ⋅ f n ( t ) ] = 1 ( 2 π ) n − 1 F 1 ( ω ) ∗ F 2 ( ω ) ∗ ⋯ ∗ F n ( ω ) \mathscr{F}\left[f_{1}(t)\cdot f_{2}(t) \cdots \cdot f_{n}(t)\right]=\frac{1}{(2 \pi)^{n-1}} F_1(\omega) * F_{2}(\omega) * \cdots *F_{n}(\omega) F[f1(t)f2(t)fn(t)]=(2π)n11F1(ω)F2(ω)Fn(ω)

1.5 δ函数

1.5.1 δ函数的定义

δ ( x − x 0 ) = { 0 ( x ≠ x 0 ) ∞ ( x = x 0 ) (1.28) \delta\left(x-x_{0}\right)=\left\{\begin{array}{ll}0 & \left(x \neq x_{0}\right) \\ \infty & \left(x=x_{0}\right)\end{array}\right. \tag{1.28} δ(xx0)={0(x=x0)(x=x0)(1.28)

∫ − ∞ ∞ δ ( x − x 0 )   d x = 1 (1.29) \int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) \,{\rm d} x=1\tag{1.29} δ(xx0)dx=1(1.29)

1.5.2 δ函数性质

1)
∫ − ∞ + ∞ δ ( x − x 0 ) f ( x )   d x = f ( x 0 ) (1.30) \int_{-\infty}^{+\infty} \delta\left(x-x_{0}\right) f(x) \,{\rm d}x=f\left(x_{0}\right)\tag{1.30} +δ(xx0)f(x)dx=f(x0)(1.30)
证明

∫ − ∞ ∞ f ( x ) δ ( x − x 0 )   d x = ∫ x 0 − ε x 0 + ε f ( x ) δ ( x − x 0 )   d x = f ( x 0 ) ∫ x 0 − ε x 0 + ε δ ( x − x 0 )   d x = f ( x 0 ) \begin{aligned} \int_{-\infty}^{\infty} f(x) \delta\left(x-x_{0}\right) \,{\rm d} x &= \int_{x_{0}-\varepsilon}^{x_{0}+\varepsilon} f(x) \delta\left(x-x_{0}\right) \,{\rm d} x \\ &=f\left(x_{0}\right) \int_{x_{0}-\varepsilon}^{x_{0}+\varepsilon} \delta\left(x-x_{0}\right) \,{\rm d} x \\ &=f\left(x_{0}\right) \end{aligned} f(x)δ(xx0)dx=x0εx0+εf(x)δ(xx0)dx=f(x0)x0εx0+εδ(xx0)dx=f(x0)
2) δ \delta δ函数是偶函数
证明
f 1 ( x ) = δ ( x − x 1 ) , f 2 ( x ) = δ ( x − x 2 ) f_1(x)=\delta(x-x_1),f_2(x)=\delta(x-x_2) f1(x)=δ(xx1),f2(x)=δ(xx2),作积分 ∫ − ∞ + ∞ f 1 ( x ) f 2 ( x )   d x \int_{-\infty}^{+\infty} f_{1}(x) f_{2}(x) \,{\rm d}x +f1(x)f2(x)dx
∫ − ∞ + ∞ f 1 ( x ) f 2 ( x )   d x = ∫ − ∞ + ∞ δ ( x − x 1 ) f 2 ( x )   d x = f 2 ( x 1 ) = δ ( x 1 − x 2 ) (1.31 a) \int_{-\infty}^{+\infty}{f_1(x)f_2(x)}\,{\rm d}x= \int_{-\infty}^{+\infty}{\delta (x-x_1)f_2(x)}\,{\rm d}x=f_2(x_1)=\delta(x_1-x_2)\tag{1.31 a} +f1(x)f2(x)dx=+δ(xx1)f2(x)dx=f2(x1)=δ(x1x2)(1.31 a)

∫ − ∞ + ∞ f 1 ( x ) f 2 ( x )   d x = ∫ − ∞ + ∞ f 1 ( x ) δ ( x − x 2 )   d x = f 1 ( x 2 ) = δ ( x 2 − x 1 ) (1.31 b) \int_{-\infty}^{+\infty}{f_1(x)f_2(x)}\,{\rm d}x= \int_{-\infty}^{+\infty}{f_1(x)\delta (x-x_2)}\,{\rm d}x=f_1(x_2)=\delta (x_2-x_1)\tag{1.31 b} +f1(x)f2(x)dx=+f1(x)δ(xx2)dx=f1(x2)=δ(x2x1)(1.31 b)

( 1.31 ) (1.31) (1.31)的两式相等,故
δ ( x 1 − x 2 ) = δ ( x 2 − x 1 ) (1.32) \delta(x_1-x_2)=\delta(x_2-x_1)\tag{1.32} δ(x1x2)=δ(x2x1)(1.32)
x 1 − x 2 = x x_1-x_2=x x1x2=x,则
δ ( − x ) = δ ( x ) (1.33) \delta(-x)=\delta(x)\tag{1.33} δ(x)=δ(x)(1.33)
所以 δ \delta δ是偶函数。
3) 若 f ( t ) f(t) f(t)有无穷次可微的函数,则有
∫ − ∞ + ∞ δ ′ ( t ) f ( t )   d t = − f ′ ( 0 ) (1.34) \int_{-\infty}^{+\infty}{\delta^{\prime}(t)f(t)}\,{\rm d}t=-f^{\prime}(0)\tag{1.34} +δ(t)f(t)dt=f(0)(1.34)
一般地,有

∫ − ∞ + ∞ δ ( n ) ( t ) f ( t )   d t = ( − 1 ) n f ( n ) ( 0 ) \int_{-\infty}^{+\infty} \delta^{(n)}(t) f(t) \,{\rm d}t=(-1)^{n} f^{(n)}(0) +δ(n)(t)f(t)dt=(1)nf(n)(0)
4)

∫ − ∞ t δ ( τ )   d τ = u ( t ) , d d t u ( t ) = δ ( t ) (1.35) \int_{-\infty}^{t} \delta(\tau) \,{\rm d} \tau=u(t), \frac{\rm d}{{\rm d} t} u(t)=\delta(t)\tag{1.35} tδ(τ)dτ=u(t),dtdu(t)=δ(t)(1.35)
其中 u ( t ) = { 0 t < 0 1 t > 0 u(t)=\left\{\begin{array}{l}0 \quad t<0 \\ 1 \quad t>0\end{array}\right. u(t)={0t<01t>0,称为单位阶跃函数。

ϕ ( x ) \phi(x) ϕ(x)是一个任意的连续函数,我们有

∫ − ∞ + ∞ ϕ ( x ) d u ( x ) d x   d x = ∫ − ∞ + ∞ ϕ ( x )   d u ( x ) = ϕ ( x ) u ( x ) ∣ − ∞ + ∞ − ∫ − ∞ + ∞ u ( x )   d ϕ ( x ) = ϕ ( + ∞ ) − ∫ 0 + ∞   d ϕ ( x ) = ϕ ( + ∞ ) − [ ϕ ( + ∞ ) − ϕ ( 0 ) ] = ϕ ( 0 ) \begin{aligned} \int_{-\infty}^{+\infty} \phi(x) \frac{{\rm d} u(x)}{{\rm d} x} \,{\rm d} x &=\int_{-\infty}^{+\infty} \phi(x) \,{\rm d} u(x) \\ &=\left.\phi(x) u(x)\right|_{-\infty} ^{+\infty}-\int_{-\infty}^{+\infty} u(x) \,{\rm d} \phi(x) \\ &=\phi(+\infty)-\int_{0}^{+\infty} \,{\rm d} \phi(x) \\ &=\phi(+\infty)-[\phi(+\infty)- \phi(0)]=\phi(0)\end{aligned} +ϕ(x)dxdu(x)dx=+ϕ(x)du(x)=ϕ(x)u(x)++u(x)dϕ(x)=ϕ(+)0+dϕ(x)=ϕ(+)[ϕ(+)ϕ(0)]=ϕ(0)
另一方面
∫ − ∞ + ∞ ϕ ( x ) δ ( x )   d x = ϕ ( 0 ) \int_{-\infty}^{+\infty} \phi(x) \delta(x) \,{\rm d} x=\phi(0) +ϕ(x)δ(x)dx=ϕ(0)
所以
∫ − ∞ + ∞ ϕ ( x ) d u ( x ) d x   d x = ∫ − ∞ + ∞ ϕ ( x ) δ ( x )   d x \int_{-\infty}^{+\infty} \phi(x) \frac{{\rm d} u(x)}{{\rm d} x} \,{\rm d} x= \int_{-\infty}^{+\infty} \phi(x) \delta(x) \,{\rm d} x +ϕ(x)dxdu(x)dx=+ϕ(x)δ(x)dx
∫ − ∞ + ∞ ϕ ( x ) [ d u ( x ) d x − δ ( x ) ]   d x = 0 \int_{-\infty}^{+\infty} \phi(x) \left[\frac{{\rm d} u(x)}{{\rm d} x}-\delta(x)\right] \,{\rm d} x=0 +ϕ(x)[dxdu(x)δ(x)]dx=0
由于 ϕ ( x ) \phi(x) ϕ(x)是任意的,所以
d u ( x ) d x = δ ( x ) \frac{{\rm d} u(x)}{{\rm d} x}=\delta(x) dxdu(x)=δ(x)

1.6 Fourier变换应用

1.6.1 微分、积分方程的Fourier变换解法

根据 F o u r i e r Fourier Fourier变换的线性性质,微分性质和积分性质,对欲求解的方程两端取 F o u r i e r Fourier Fourier变换将其转化为象函数的代数方程,由这个代数方程求出象函数,然后再取 F o u r i e r Fourier Fourier逆变换,就得出原来方程的解。

例1

求解积分方程
g ( t ) = h ( t ) + ∫ − ∞ + ∞ f ( τ ) g ( t − τ )   d τ g(t)=h(t)+\int_{-\infty}^{+\infty} f(\tau) g(t-\tau) \,{\rm d} \tau g(t)=h(t)++f(τ)g(tτ)dτ
其中 h ( t ) , f ( t ) h(t),f(t) h(t),f(t)为已知函数,且 g ( t ) , h ( t ) g(t),h(t) g(t),h(t) f ( t ) f(t) f(t) F o u r i e r Fourier Fourier变换都存在

F [ g ( t ) ] = G ( ω ) , F [ h ( t ) ] = H ( ω ) \mathscr{ F}\left[g(t)\right]=G(\omega),\mathscr{ F}\left[h(t)\right]=H(\omega) F[g(t)]=G(ω),F[h(t)]=H(ω) F [ f ( t ) ] = F ( ω ) \mathscr{ F}\left[f(t)\right]=F(\omega) F[f(t)]=F(ω)

G ( ω ) = H ( ω ) + F ( ω ) ⋅ G ( ω ) G ( ω ) = H ( ω ) 1 − F ( ω ) F − 1 [ G ( ω ) ] = 1 2 π ∫ − ∞ ∞ G ( ω ) e i ω t   d ω g ( t ) = 1 2 π ∫ − ∞ ∞ H ( ω ) 1 − F ( ω ) e i ω t   d ω \begin{aligned}G(\omega) &=H(\omega)+F(\omega) \cdot G(\omega) \\ G(\omega) &=\frac{H(\omega)}{1-F(\omega)} \\ \mathscr{ F}^{-1}\left[G(\omega)\right]& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\omega) e^{i \omega t} \,{\rm d} \omega \\ g(t)&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{H(\omega)}{1-F(\omega)} e^{i \omega t} \,{\rm d} \omega \end{aligned} G(ω)G(ω)F1[G(ω)]g(t)=H(ω)+F(ω)G(ω)=1F(ω)H(ω)=2π1G(ω)eiωtdω=2π11F(ω)H(ω)eiωtdω

例2

求常系数非齐次线性微分方程

d 2 d t 2 y ( t ) − y ( t ) = − f ( t ) \frac{{\rm d}^{2}}{{\rm d} t^{2}} y(t)-y(t)=-f(t) dt2d2y(t)y(t)=f(t)
的解,其中 f ( t ) f(t) f(t)为已知函数

F [ y ( t ) ] = Y ( ω ) , F [ f ( t ) ] = F ( ω ) \mathscr{F}\left[y(t)\right]=Y(\omega),\mathscr{F}\left[f(t)\right]=F(\omega) F[y(t)]=Y(ω),F[f(t)]=F(ω)

( i ω ) 2 Y ( ω ) − Y ( ω ) = − F ( ω ) Y ( ω ) = 1 1 + ω 2 F ( ω ) y ( t ) = 1 2 π ∫ − ∞ + ∞ Y ( ω ) e i ω t   d ω = 1 2 π ∫ − ∞ + ∞ 1 1 + ω 2 F ( ω ) e i ω t   d ω = f ( t ) ∗ ( 1 2 e − ∣ t ∣ ) = 1 2 ∫ − ∞ + ∞ f ( τ ) e − ∣ t − τ ∣   d τ \begin{aligned}(i \omega)^{2} Y(\omega)-Y(\omega) &=-F(\omega) \\ Y(\omega) &=\frac{1}{1+\omega^{2}} F(\omega) \\ y(t) &=\frac{1}{2\pi} \int_{-\infty}^{+\infty} Y(\omega) e^{i\omega t} \,{\rm d} \omega \\ &=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{1}{1+\omega^{2}} F(\omega) e^{i \omega t} \,{\rm d} \omega \\ &=f(t) *\left(\frac{1}{2} e^{-|t|}\right) \\ &=\frac{1}{2} \int_{-\infty}^{+\infty} f(\tau) e^{-|t-\tau|} \,{\rm d}\tau \end{aligned} (iω)2Y(ω)Y(ω)Y(ω)y(t)=F(ω)=1+ω21F(ω)=2π1+Y(ω)eiωtdω=2π1+1+ω21F(ω)eiωtdω=f(t)(21et)=21+f(τ)etτdτ

例3

求微分积分方程
a x ′ ( t ) + b ( x ) + c ∫ − ∞ t x ( t )   d t = h ( t ) a x^{\prime}(t)+b (x)+c \int_{-\infty}^{t} x(t) \,{\rm d} t=h(t) ax(t)+b(x)+ctx(t)dt=h(t)
的解,其中 − ∞ < t < + ∞ , a , b , c -\infty<t<+\infty,a,b,c <t<+,a,b,c 均为常数。

根据 F o u r i e r Fourier Fourier变换的线性性质、微分性质和积分性质,且记
F [ x ( t ) ] = X ( ω ) , F [ h ( t ) ] = H ( ω ) \mathscr{ F}\left[x(t)\right]=X(\omega),\mathscr{ F}\left[h(t)\right]=H(\omega) F[x(t)]=X(ω),F[h(t)]=H(ω)
对上述方程两端取 F o u r i e r Fourier Fourier变换,可得

a i ω X ( w ) + b X ( ω ) + c i ω X ( ω ) = H ( ω ) X ( ω ) = H ( ω ) b + i ( a ω − c ω ) \begin{aligned}ai \omega X(w)+b X(\omega)+\frac{c}{i\omega}X(\omega)&=H(\omega) \\ X(\omega) &=\frac{H(\omega)}{b+i\left(a \omega-\frac{c}{\omega}\right)} \end{aligned} aiωX(w)+bX(ω)+iωcX(ω)X(ω)=H(ω)=b+i(aωωc)H(ω)
由上式的 F o u r i e r Fourier Fourier逆变换为

x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( ω ) e i ω t   d ω = 1 2 π ∫ ∞ + ∞ H ( ω ) b + i ( a ω − c ω ) e i ω t   d w \begin{aligned} x(t) &=\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{i \omega t} \,{\rm d} \omega \\ &=\frac{1}{2 \pi} \int_{\infty}^{+\infty} \frac{H(\omega)}{b+i\left(a \omega-\frac{c}{\omega}\right)} e^{i \omega t} \,{\rm d}w \end{aligned} x(t)=2π1+X(ω)eiωtdω=2π1+b+i(aωωc)H(ω)eiωtdw

1.6.2 偏微分方程的Fourier变换解法

对于 u = u ( t ) u=u(t) u=u(t)及其偏导数 ∂ u ∂ x , ∂ 2 u ∂ x 2 \frac{\partial u}{\partial x},\frac{\partial^2 u}{\partial x^2} xu,x22u作为 x x x的一元函数取 F o u r i e r Fourier Fourier变换时都满足 F o u r i e r Fourier Fourier变换中的微分性质的条件, ∂ u ∂ t , ∂ 2 u ∂ t 2 \frac{\partial u}{\partial t},\frac{\partial^2 u}{\partial t^2} tu,t22u关于 t t t F o u r i e r Fourier Fourier变换时允许(偏)导数运算与积分运算交换次序,即

F [ ∂ u ∂ t ] = ∫ − ∞ + ∞ ∂ u ∂ t e − i ω t   d t = ∂ ∂ t ∫ − ∞ + ∞ u ( x , t ) e − i ω x   d x = ∂ ∂ t F [ u ( x , t ) ] \begin{aligned} \mathscr{ F}\left[\frac{\partial u}{\partial t}\right] &=\int_{-\infty}^{+\infty} \frac{\partial u}{\partial t} e^{-i \omega t} \,{\rm d} t \\ &=\frac{\partial }{\partial t} \int_{-\infty}^{+\infty} u(x, t) e^{-i \omega x} \,{\rm d} x \\ &=\frac{\partial}{\partial t} \mathscr{ F}[u(x, t)] \end{aligned} F[tu]=+tueiωtdt=t+u(x,t)eiωxdx=tF[u(x,t)]
同理
F [ ∂ 2 u ∂ t 2 ] = ∂ 2 ∂ t 2 F [ x ( u , t ) ] \mathscr{ F}\left[\frac{\partial^{2} u}{\partial t^{2}}\right]=\frac{\partial^{2}}{\partial t^{2}} \mathscr{ F}[ x(u, t)] F[t22u]=t22F[x(u,t)]

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值