线性代数(二十五) : 克拉姆法则

本节讲解求解线性方程组的一种写法克拉姆法则(Cramer)

1 克拉姆法则

解线性方程组 Ax = u (A是可逆矩阵) 的克拉姆法则如下:


2 克拉姆法则的证明

首先方程组的解可写为以下形式:


因为Aej等于A的第j列aj,因此有:


将A的第k列换成u后得到Ak:


计算Ak的行列式并由行列式的多重线性性质可得:


由行列式性质可知上式仅仅第k项非零:


因为A可逆 所以detA不等于0,于是:


根据拉普拉斯公式 将detAk按第k列展开得到:

带入上式得到计算方程组解的克拉姆法则:


克拉姆法则就是通过计算行列式求解方程组,但是当矩阵规模较大时 ,计算量大大超过消元法。

3 克拉姆法则求解线性方程组示例

假设如下线性方程组 并假设矩阵可逆:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值