✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
电力需求预测是电力系统运行和管理的关键环节,准确预测用电需求对于保障电力供应稳定、提高能源利用效率至关重要。近年来,随着人工智能技术的快速发展,深度学习模型在电力需求预测领域展现出巨大潜力。本文提出了一种基于非洲秃鹫优化算法(AVOA)、卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制的混合模型,用于电力需求预测。该模型利用AVOA算法优化CNN-GRU-Attention模型的超参数,并结合注意力机制提升模型对时间序列数据的特征提取能力。最后,本文使用Matlab平台对所提模型进行了仿真实验,结果表明该模型在预测精度和泛化能力方面均优于传统的预测模型。
关键词: 电力需求预测,非洲秃鹫优化算法,卷积神经网络,门控循环单元,注意力机制,Matlab
1. 绪论
电力需求预测是指对未来一段时间的电力负荷进行预测,是电力系统运行和管理的核心问题之一。准确的电力需求预测对于保障电力供应安全稳定、优化发电调度、提高能源利用效率、降低运行成本具有重要意义。
传统的电力需求预测方法主要包括时间序列分析、统计回归模型、专家经验等。然而,这些方法在处理复杂、非线性、高维数据时存在局限性,难以满足现代电力系统对预测精度的要求。
近年来,深度学习技术的发展为电力需求预测提供了新的方法和思路。深度学习模型具有强大的特征提取能力,能够自动学习数据中的复杂关系,在处理高维、非线性数据方面表现出色。例如,卷积神经网络(CNN)可以有效地提取数据的空间特征,门控循环单元(GRU)可以处理时间序列数据的长短期依赖关系,注意力机制可以提升模型对关键特征的关注度。
2. 相关研究
近年来,基于深度学习的电力需求预测方法取得了显著进展,研究人员针对不同的应用场景提出了各种深度学习模型。
-
CNN模型: CNN模型在图像识别领域取得了巨大成功,近年来被应用于电力需求预测,例如文献[1]将CNN应用于电力需求预测,取得了较好的预测效果。
-
RNN模型: RNN模型可以处理时间序列数据,例如文献[2]利用RNN模型预测短期电力负荷,展现出良好的预测性能。
-
GRU模型: GRU模型是RNN模型的变种,具有更强的记忆能力,可以有效地处理时间序列数据中的长期依赖关系,例如文献[3]使用GRU模型进行电力负荷预测,取得了较好的结果。
-
注意力机制: 注意力机制可以提升模型对关键特征的关注度,增强模型的预测能力,例如文献[4]将注意力机制引入RNN模型进行电力需求预测,提高了模型的预测精度。
3. 基于AVOA-CNN-GRU-Attention的电力需求预测模型
本文提出了一种基于非洲秃鹫优化算法(AVOA)、卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制的混合模型,用于电力需求预测。该模型的架构如图1所示。
3.1 AVOA算法
AVOA算法是一种新型的群智能优化算法,模拟了非洲秃鹫的觅食行为。AVOA算法具有较强的全局搜索能力和局部搜索能力,能够有效地解决复杂优化问题。
3.2 CNN-GRU-Attention模型
该模型由CNN、GRU和注意力机制组成。CNN层用于提取数据的空间特征,GRU层用于处理时间序列数据的长期依赖关系,注意力机制用于提升模型对关键特征的关注度。
3.3 模型训练与优化
本文采用AVOA算法优化CNN-GRU-Attention模型的超参数,例如学习率、卷积核大小、GRU层数等。AVOA算法通过不断迭代搜索最优的超参数组合,以提升模型的预测精度。
4. 实验结果与分析
本文使用Matlab平台对所提模型进行了仿真实验,并与传统的预测模型进行了比较。实验结果表明,该模型在预测精度和泛化能力方面均优于传统的预测模型。
4.1 数据集
本文使用某地区的实际电力需求数据进行实验,数据集包括2018年1月至2020年12月的历史电力需求数据。
分析
实验结果表明,本文提出的AVOA-CNN-GRU-Attention模型在电力需求预测方面取得了较好的结果,其预测精度明显优于传统的预测模型。这主要得益于以下几个方面:
-
AVOA算法能够有效地优化CNN-GRU-Attention模型的超参数,提升模型的预测能力。
-
CNN层能够有效地提取数据的空间特征,提高模型对数据的理解能力。
-
GRU层可以处理时间序列数据的长短期依赖关系,增强模型对时间序列数据的建模能力。
-
注意力机制可以提升模型对关键特征的关注度,提高模型的预测精度。
5. 结论
本文提出了一种基于AVOA-CNN-GRU-Attention的电力需求预测模型,该模型结合了AVOA算法、CNN、GRU和注意力机制的优势,在电力需求预测方面取得了较好的结果。该模型具有较高的预测精度和泛化能力,为解决电力系统中的预测问题提供了新的思路。
6. 未来工作
未来工作将进一步研究以下几个方面:
-
探索其他深度学习模型,例如Transformer模型,以进一步提升模型的预测精度。
-
将模型应用于其他类型的电力需求预测,例如短期预测、中期预测、长期预测等。
-
研究模型的鲁棒性,提高模型对噪声和异常数据的抗干扰能力。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类