【状态估计】观测信号(包括异常值)的状态估计方法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

状态估计是现代控制理论、信号处理以及人工智能等领域的核心问题。其目标是从受噪声干扰的观测信号中,推断出系统的真实状态。然而,在实际应用中,观测信号往往并非完美无瑕,异常值(Outliers)的存在给状态估计带来了巨大的挑战。这些异常值可能是由传感器故障、环境干扰、通信中断等多种原因造成的,它们会严重影响估计精度,甚至导致状态估计发散,最终损害系统的性能和可靠性。因此,针对含有异常值的观测信号,发展稳健的状态估计方法至关重要。

本文将深入探讨观测信号状态估计方法,重点关注异常值对估计的影响,并详细阐述应对异常值的多种策略,包括预处理方法、稳健估计器设计以及基于模型修正的方法。通过对这些方法的分析和比较,旨在为读者提供关于处理含异常值观测信号的全面视角和实用指导。

一、 异常值对状态估计的影响

异常值是指观测信号中明显偏离预期分布的数据点。它们通常具有以下特点:

  • 幅度显著偏离:

     其数值远大于或远小于正常范围内的观测值。

  • 持续时间短:

     往往是瞬时性的干扰,而非持续性的状态变化。

  • 成因多样:

     可能由传感器故障、数据传输错误、环境噪声突变等因素引起。

在状态估计中,常见的框架是基于卡尔曼滤波(Kalman Filter, KF)及其扩展形式,如扩展卡尔曼滤波(Extended Kalman Filter, EKF)和无迹卡尔曼滤波(Unscented Kalman Filter, UKF)。这些滤波器假设观测噪声服从高斯分布,并利用高斯分布的特性进行最优估计。然而,异常值的出现打破了高斯噪声的假设,使得滤波器无法准确地估计状态。

具体来说,异常值会对状态估计产生以下影响:

  • 估计偏差增大:

     滤波器会错误地将异常值解读为状态变化,从而导致估计偏差。

  • 估计方差膨胀:

     异常值会使得估计器对自身的不确定性估计过高,从而降低了其对新观测值的信任程度,导致估计精度下降。

  • 滤波器发散:

     在某些情况下,异常值会使得滤波器对状态的估计逐渐偏离真实值,最终导致滤波器发散,失去跟踪能力。

因此,必须采取有效的措施来抑制异常值的影响,保证状态估计的准确性和稳定性。

二、 应对异常值的状态估计方法

为了解决异常值带来的问题,研究者们提出了多种状态估计方法。这些方法大致可以分为三类:预处理方法、稳健估计器设计以及基于模型修正的方法。

1. 预处理方法:

预处理方法是在状态估计之前,对观测信号进行处理,以检测和抑制异常值。这类方法的优点是简单易行,可以与各种状态估计器结合使用。常见的预处理方法包括:

  • 异常值检测:

     利用统计方法,如Z-score法、箱线图法(Boxplot)、格拉布斯检验(Grubbs' test)等,识别观测数据中的异常值。这些方法通常基于数据点的统计特性,判断其是否显著偏离平均值或中位数。

  • 数据平滑:

     利用滑动平均、中值滤波、Savitzky-Golay滤波等方法,平滑观测信号,降低异常值的幅度。这些方法通过对相邻数据点进行加权平均,减少单个异常值的影响。

  • 数据截断:

     设定一个阈值范围,将超出范围的数据点截断到边界值。这种方法简单直接,但可能会损失一些有用的信息。

  • 插值法:

     利用相邻的正常数据点,对异常值进行插值估计。常见的插值方法包括线性插值、样条插值等。这种方法可以恢复部分被异常值破坏的信息,但需要确保插值的准确性。

预处理方法能够有效地降低异常值的影响,提高状态估计的精度。然而,这些方法往往需要预先设定一些参数,如阈值、窗口大小等,参数选择的合理性直接影响预处理的效果。此外,过于激进的预处理可能会抹杀掉真实的信号变化,导致估计结果失真。

2. 稳健估计器设计:

稳健估计器是指对异常值不敏感的状态估计器。这类方法通过修改状态估计的算法,使其能够容忍异常值的存在。常见的稳健估计器包括:

  • M估计器:

     M估计器是一种基于最大似然估计(Maximum Likelihood Estimation, MLE)的稳健估计方法。它通过修改损失函数,降低异常值对估计结果的影响。例如,采用Huber损失函数、Tukey双权重损失函数等,这些损失函数对小误差线性增长,对大误差增长缓慢甚至停止增长,从而限制了异常值的影响。

  • R估计器:

     R估计器是一种基于秩统计的稳健估计方法。它不依赖于数据的具体数值,而是利用数据的秩次信息进行估计,因此对异常值具有很强的鲁棒性。例如,Wilcoxon符号秩检验等。

  • 卡尔曼滤波改进:

     针对卡尔曼滤波,可以通过修改观测噪声的协方差矩阵,或者引入遗忘因子,来提高其对异常值的鲁棒性。例如,自适应卡尔曼滤波(Adaptive Kalman Filter, AKF)可以根据观测噪声的实际情况,动态调整协方差矩阵,从而抑制异常值的影响。另一种方法是使用强跟踪滤波器,通过引入遗忘因子,使得滤波器能够更快地适应状态的变化,从而减轻异常值的影响。

  • 粒子滤波改进:

     粒子滤波是一种非参数化的状态估计方法,可以处理非线性、非高斯系统。通过修改重采样策略,或者引入异常值检测机制,可以提高粒子滤波对异常值的鲁棒性。例如,采用裁剪重采样(Clamped Resampling)方法,可以防止个别粒子权重过大,从而抑制异常值的影响。

稳健估计器能够在一定程度上抵抗异常值的影响,提高状态估计的精度和稳定性。然而,稳健估计器的设计往往需要牺牲一定的估计精度,在正常情况下,其性能可能不如传统的卡尔曼滤波。此外,稳健估计器的参数选择也比较困难,需要根据具体的应用场景进行调整。

3. 基于模型修正的方法:

这类方法通过修正状态空间模型,以更好地描述含有异常值的观测信号。常见的模型修正方法包括:

  • 状态增强:

     将异常值建模为额外的状态变量,通过状态估计器同时估计系统状态和异常值。例如,可以假设异常值服从某种概率分布,如t分布或混合高斯分布,并将这些分布的参数作为状态变量进行估计。

  • 观测模型修正:

     修改观测模型,使其能够更好地描述含有异常值的观测信号。例如,可以假设观测噪声服从t分布,t分布具有比高斯分布更厚的尾部,可以更好地描述含有异常值的数据。

  • 动态系统辨识:

     利用动态系统辨识方法,在线估计系统的模型参数,包括噪声的统计特性。通过实时调整模型参数,可以更好地适应异常值的存在,提高状态估计的精度。

基于模型修正的方法能够更准确地描述含有异常值的观测信号,从而提高状态估计的精度。然而,这类方法往往需要更多的计算资源,并且需要对系统模型有更深入的了解。

三、 实际应用中的考虑

在实际应用中,选择合适的状态估计方法需要综合考虑以下因素:

  • 异常值的类型和频率:

     如果异常值是稀疏且幅度较大的,可以考虑使用预处理方法或稳健估计器。如果异常值是密集且幅度较小的,可以考虑使用模型修正方法。

  • 系统模型的准确性:

     如果系统模型比较准确,可以考虑使用卡尔曼滤波及其改进方法。如果系统模型不太准确,可以考虑使用非参数化的状态估计方法,如粒子滤波。

  • 计算资源:

     一些复杂的状态估计方法,如模型修正方法,需要更多的计算资源。在资源有限的情况下,可以考虑使用简单的预处理方法或稳健估计器。

  • 实时性要求:

     一些状态估计方法,如粒子滤波,需要较长的计算时间,可能无法满足实时性要求。在需要实时估计的情况下,可以考虑使用卡尔曼滤波及其改进方法。

此外,在实际应用中,通常需要将多种方法结合使用,才能获得最佳的估计效果。例如,可以先使用预处理方法去除一部分异常值,然后再使用稳健估计器进行状态估计。

四、 总结与展望

状态估计是许多领域的重要技术,而异常值是实际应用中不可避免的问题。本文详细探讨了观测信号状态估计中应对异常值的多种方法,包括预处理方法、稳健估计器设计以及基于模型修正的方法。这些方法各有优缺点,需要根据具体的应用场景进行选择和组合。

未来的研究方向包括:

  • 自适应异常值检测和抑制:

     发展能够自动检测和抑制异常值的方法,减少人工干预。

  • 基于深度学习的状态估计:

     利用深度学习技术,从大量数据中学习系统模型和噪声特性,提高状态估计的精度和鲁棒性。

  • 多传感器融合:

     利用多个传感器的信息,提高状态估计的冗余性和可靠性,降低异常值的影响。

  • 可解释性状态估计:

     在状态估计过程中,提供关于异常值的信息,帮助用户理解系统的行为和状态。

随着技术的不断发展,相信状态估计在应对异常值方面将取得更大的突破,为各个领域的发展做出更大的贡献。

⛳️ 运行结果

🔗 参考文献

[1] 周念成,谭桂华,赵渊,等.一种计及参数误差的电网谐波状态估计方法[J].重庆大学学报, 2009, 32(2):146-150.DOI:10.11835/j.issn.1000-582x.2009.02.006.

[2] 黄业伟.电动汽车锂离子动力电池健康状态估计方法研究[D].合肥工业大学,2014.

[3] 黎娜.水下运载器惯性测量事后状态估计方法研究[D].西北工业大学,2006.DOI:10.7666/d.y930322.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值