【优化选址】基于弗洛伊德算法求解物流选址问题含Matlab源码

本文探讨了在工程实践中使用传统方法求解全局非线性规划问题的挑战,介绍了如何通过转换和优化算法如fmincon来解决。作者分享了MATLAB代码实例,并展示了求解过程中的仿真结果。重点在于提高求解全局解的概率和算法的实用性。
摘要由CSDN通过智能技术生成

1 简介

引言

在实际工程应用中,通过在多个初始点上使用传统数值优化方法来求取全局解的方法仍然被人们所采用,但是这种处理方法求得全局解的概率不高,可靠性低,因此建立尽可能大概率的求解全局解算法仍然是一个重要问题。

求解非线性规划问题要比求解线性规划问题困难得多。非线性规划有着众多的算法,而且仍有新算法不断地被提出来,但它却不像线性规划有单纯形法这一通用解法,各个算法都有特定的适用范围,带有一定的局限性。通常,求解带约束条件的非线性规划问题的常见方法是:将约束问题化为无约束问题,将非线性规划问题化为线性规划问题,以及将复杂问题转化为简单的问题。

2 部分代码

x0 = [3.0000  5.0000  0.0707  7.0000  0  0.9293  0  0  3.9293  0  6.0000 ...      10.0707  6.3875  4.3943  5.7511  7.1867]';A=[1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0];b=[20;20];Aeq=[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;...       0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;...       0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;...       0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;...       0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0;...       0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0];beq=[3;5;4;7;6;11];VLB=[0;0;0;0;0;0;0;0;0;0;0;0];VUB=[];[x,fval]=fmincon('f1',x0,A,b,Aeq,beq,VLB,VUB)s=[1.25, 8.75, 0.5, 5.75, 3, 7.25];t=[1.25, 0.75, 4.75, 5, 6.5, 7.25];plot(s,t,'^')text(1.25,1.25,'+3');text(8.75,0.75,'+5');text(0.5,4.75,'+4');text(5.75,5,'+7'); text(3,6.5,'+6');text(7.25,7.25,'+11');text(x(13),x(14),'A');text(x(15),x(16),'B');% [x,mu,lambda,output]=multphr('f1','h1','g1','df1','dh1','dg1',x0)

3 仿真结果

4 参考文献

[1]李卫江, 郭晓汾, 张毅,等. 基于Matlab优化算法的物流中心选址[J]. 长安大学学报(自然科学版), 2006, 026(003):76-79.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值