【数据分析】基于MATLAB实现SVDD决策边界可视化

本文探讨了支持向量机(SVM)在数据挖掘中的应用,特别是在高维数据预测的优势。通过分析SVM的理论背景和改进方法,作者展示了如何使用MATLAB进行支持向量描述数据(SVDD)的决策边界可视化。文章提供了仿真代码,并引用了相关研究论文作为参考。
摘要由CSDN通过智能技术生成

 1 内容介绍

在现实世界中,万事万物都有着其特征,这样的特征或多或少、或重要或不重要。人们通过事物的特征可以确定其所属分类,但是当事物的特征都很多时,如果人们依靠传统的方法对事物进行分类就显得耗时耗力,并且分类的精确性不高。而分类作为一种预测模型,如果分类的精确性低或用时长,则这种预测将变得毫无价值。因此人们提出了各种分类模型来对事物进行预测,其中支持向量机和支持向量描述数据在对高维数据进行预测时有着一定的优势,并且根据不同的要求,对这两种算法的改进应用到了现实生活中的许多领域。 首先,本文研究了数据挖掘分类算法中的支持向量机的背景和理论,分析并总结了SVM各种改进方法的研究现状。​

2 仿真代码

function x_range = grid_range(x, varargin)
%{ 
% DESCRIPTION
Compute the range of grid 

      x_range = grid_range(x)
      x_range = grid_range(x, 'r', 0.5)
      x_range = grid_range(x, 'n', 200)
      x_range = grid_range(x, 'r', 0.5, 'n', 200)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值