【广义SEIR流行病模型】​具有时间依赖性死亡和恢复率的扩展SEIR模型的数值实现附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

传染病动力学模型的建立与分析是理解和预测疾病传播过程、制定有效干预策略的关键。在众多流行病模型中,SEIR(易感者-暴露者-感染者-恢复者)模型因其对疾病潜伏期的刻画而广泛应用于具有潜伏期的传染病研究。然而,经典的SEIR模型通常假设疾病的传播率、恢复率和死亡率是恒定不变的,这在现实世界中往往难以成立。病毒变异、医疗资源的变化、公众行为的适应性调整以及季节性因素等都可能导致这些关键参数随时间变化。因此,构建具有时间依赖性死亡和恢复率的扩展SEIR模型,并进行有效的数值实现,对于更准确地模拟和预测疾病的动态演变具有重要意义。

本文旨在探讨具有时间依赖性死亡和恢复率的广义SEIR模型,并详细阐述其数值实现方法。首先,我们将回顾经典SEIR模型的框架,并分析其局限性。随后,我们将引入时间依赖性的死亡率和恢复率函数,构建广义SEIR模型。最后,我们将重点探讨常用的数值求解方法,如欧拉法、龙格-库塔法等,并讨论其在模型实现过程中的应用和注意事项。

一、经典SEIR模型的框架与局限性

经典的SEIR模型将总人口分为四个互相独立的仓室:易感者(Susceptible, S),暴露者(Exposed, E),感染者(Infectious, I),和恢复者(Recovered, R)。模型的核心假设如下:

  • 易感者 (S):

     未感染疾病且可能被感染的个体。他们以一定的感染率 β 与感染者接触并转化为暴露者。

  • 暴露者 (E):

     已经感染疾病但尚未表现出传染性的个体。他们经过一定的潜伏期后转化为感染者。

  • 感染者 (I):

     能够传播疾病的个体。他们以一定的恢复率 γ 转化为恢复者或以一定的死亡率 μ 转化为死亡个体(在某些模型中死亡不单独列出,而是被视为从感染仓室移除)。

  • 恢复者 (R):

     已经从疾病中康复并获得免疫力的个体。他们不再具有传染性,通常认为免疫是永久性的。

经典的SEIR模型通常用一组常微分方程(ODE)来描述各仓室随时间的变化:

dS/dt = - β * S * I / N
dE/dt = β * S * I / N - σ * E
dI/dt = σ * E - γ * I - μ * I
dR/dt = γ * I

其中,N 是总人口数,通常假定为常数(不考虑人口出生和死亡)。β 是感染率,σ 是从暴露者到感染者的转化率(与潜伏期相关),γ 是恢复率,μ 是死亡率。在经典模型中,β, σ, γ, μ 均为常数。

经典SEIR模型的优势在于其简洁性和可解析性,能够揭示疾病传播的基本规律,如基本再生数R0的概念。然而,其局限性在于对现实复杂性的简化。在实际疫情中,病毒的传染性、疾病的致死率以及个体的康复能力都可能受到多种因素的影响而随时间变化。例如:

  • 病毒变异:

     新出现的病毒变异株可能具有更高的传播性或致病性,导致 β 和 μ 发生变化。

  • 医疗资源的压力:

     在疫情爆发初期,医疗资源可能不足,导致死亡率 μ 上升;随着医疗体系的改善和治疗方案的优化, μ 可能下降。

  • 公众行为:

     随着对疾病的了解加深,公众可能采取更严格的防护措施,如佩戴口罩、保持社交距离,从而降低感染率 β。

  • 季节性:

     某些呼吸道疾病的传播与季节相关,可能影响感染率 β。

  • 疫苗接种:

     疫苗接种率的提高会影响 S 仓室的大小,并可能改变感染率 β 和疾病严重程度,从而影响 μ 和 γ。

因此,为了更准确地模拟现实世界的疫情,我们需要将这些时间依赖性因素纳入模型中。

二、具有时间依赖性死亡和恢复率的广义SEIR模型

为了克服经典SEIR模型的局限性,我们将恢复率和死亡率视为时间函数。构建具有时间依赖性死亡率 μ(t) 和恢复率 γ(t) 的广义SEIR模型:

dS/dt = - β * S * I / N
dE/dt = β * S * I / N - σ * E
dI/dt = σ * E - γ(t) * I - μ(t) * I
dR/dt = γ(t) * I

其中,μ(t) 和 γ(t) 是关于时间 t 的函数。β 和 σ 在此模型中仍然可以被视为常数,或者也可以进一步扩展为时间依赖性函数 β(t) 和 σ(t),以纳入更多现实因素。本文着重于 μ(t) 和 γ(t) 的时间依赖性,因此我们将 β 和 σ 暂时视为常数以简化讨论。

时间依赖性函数 μ(t) 和 γ(t) 的具体形式取决于所建模的疾病和研究目的。它们可以基于历史数据进行拟合,或者根据对疫情演变趋势的预设进行建模。例如:

  • 阶跃函数:

     可以用来模拟医疗资源突然改善或恶化导致的死亡率或恢复率的突然变化。

  • 分段线性函数:

     可以用来描述随着时间推移,死亡率或恢复率呈现逐渐上升或下降的趋势。

  • 指数函数:

     可以用来模拟某种治疗方法的有效性随时间逐渐增强或减弱。

  • 与医疗资源利用率相关的函数:

     μ(t) 可能与 ICU 床位利用率呈正相关,当医疗系统不堪重负时,死亡率升高。

  • 与病毒变异相关的函数:

     γ(t) 可能与病毒的清除率相关,某些变异株可能导致更长的感染期,从而降低 γ(t)。

引入时间依赖性函数 μ(t) 和 γ(t) 使得模型能够更灵活地反映疫情动态。例如,在疫情爆发初期,可能由于医疗资源不足或病毒毒性较高,死亡率 μ(t) 较高,而恢复率 γ(t) 较低;随着时间的推移,医疗体系应对能力的提升和治疗方案的改进,μ(t) 可能下降,而 γ(t) 可能上升。

三、广义SEIR模型的数值实现

由于具有时间依赖性系数的常微分方程组通常没有解析解,因此需要借助数值方法来求解广义SEIR模型。数值实现的目标是在离散的时间点上近似求解各仓室的人口数随时间的变化。常用的数值方法包括:

  1. 欧拉法 (Euler Method):

    欧拉法是最简单的数值求解方法之一。它基于泰勒展开的一阶近似,利用当前时间步长的导数来预测下一个时间步长的值。对于一个通用的ODE:dy/dt = f(t, y),欧拉法的迭代公式为:
    y(t + Δt) ≈ y(t) + f(t, y(t)) * Δt

将欧拉法应用于广义SEIR模型,我们将时间离散化为一系列步长为 Δt 的时间点 t_n = t_0 + n * Δt (n=0, 1, 2, ...)。则各仓室在下一个时间点 t_{n+1} 的近似值可以表示为:

S(t_{n+1}) ≈ S(t_n) + (- β * S(t_n) * I(t_n) / N) * Δt
E(t_{n+1}) ≈ E(t_n) + (β * S(t_n) * I(t_n) / N - σ * E(t_n)) * Δt
I(t_{n+1}) ≈ I(t_n) + (σ * E(t_n) - γ(t_n) * I(t_n) - μ(t_n) * I(t_n)) * Δt
R(t_{n+1}) ≈ R(t_n) + (γ(t_n) * I(t_n)) * Δt

其中,γ(t_n) 和 μ(t_n) 是在时间点 t_n 处的时间依赖性恢复率和死亡率。

欧拉法的优点: 概念简单,易于实现。
欧拉法的缺点: 精度较低,特别是对于较大的时间步长 Δt,误差会累积。为了获得可接受的精度,通常需要非常小的时间步长,导致计算量较大。

  1. 龙格-库塔法 (Runge-Kutta Methods):

    龙格-库塔法是一类更高阶的数值方法,通过在每个时间步长内计算多个中间点的导数,来提高近似精度。其中最常用的是四阶龙格-库塔法 (RK4)。RK4 方法通过计算四个斜率的加权平均来预测下一个时间步长的值,从而达到较高的精度,且在相同精度要求下,通常比欧拉法需要更大的时间步长。

对于一个通用的ODE:dy/dt = f(t, y),RK4 方法的迭代公式通常涉及计算四个中间斜率 k1, k2, k3, k4:

k1 = f(t_n, y_n)
k2 = f(t_n + Δt/2, y_n + Δt/2 * k1)
k3 = f(t_n + Δt/2, y_n + Δt/2 * k2)
k4 = f(t_n + Δt, y_n + Δt * k3)

y_{n+1} = y_n + Δt/6 * (k1 + 2k2 + 2k3 + k4)

将RK4方法应用于广义SEIR模型,需要对每个仓室的导数进行类似的处理。例如,对于 S 仓室:

dS/dt = f_S(t, S, E, I, R) = - β * S * I / N

我们可以按照RK4的步骤计算 S 在下一个时间步长的近似值。对于每个仓室,都需要进行类似的计算,并且在计算中间斜率时,需要使用当前时间点以及中间时间点的各仓室值以及对应的时间依赖性参数 μ(t) 和 γ(t)。这使得RK4方法的实现比欧拉法稍微复杂,但其精度通常远高于欧拉法。

龙格-库塔法的优点: 精度较高,对于大多数常微分方程问题都能获得较好的结果。
龙格-库塔法的缺点: 实现比欧拉法复杂,计算量相对较大(但通常小于为了达到相同精度所需的欧拉法计算量)。

数值实现步骤概要:

  1. 定义模型参数和初始条件:

     确定常数参数 β, σ, N 以及时间依赖性函数 μ(t) 和 γ(t) 的具体形式。设置各仓室在初始时间 t_0 的人口数 S(t_0), E(t_0), I(t_0), R(t_0)。

  2. 选择数值求解方法和时间步长:

     根据所需的精度和计算资源选择欧拉法或龙格-库塔法,并确定合适的时间步长 Δt。较小的时间步长通常能提高精度,但会增加计算时间。

  3. 循环迭代求解:

     从初始时间点 t_0 开始,使用选定的数值方法,按照时间步长 Δt 逐次计算各仓室在下一个时间点的人口数。在计算过程中,需要根据当前时间点或中间时间点的值评估时间依赖性函数 μ(t) 和 γ(t)。

  4. 记录和可视化结果:

     将计算得到的各仓室随时间变化的人口数记录下来,并进行可视化,如绘制 S(t), E(t), I(t), R(t) 的时间序列图,以便分析疾病传播的动态。

四、数值实现中的注意事项

  • 时间依赖性函数的实现:

     μ(t) 和 γ(t) 可以通过查表、插值或者直接使用数学表达式来实现。如果函数形式复杂或基于离散数据,插值方法(如线性插值、样条插值)是常用的选择。

  • 时间步长的选择:

     选择合适的时间步长 Δt 至关重要。过大的 Δt 会导致较大的数值误差,甚至可能出现不稳定的结果;过小的 Δt 会增加计算量。通常需要进行敏感性分析,测试不同时间步长对结果的影响,以找到一个平衡点。

  • 数值稳定性:

     对于某些复杂的模型或参数组合,数值方法可能存在稳定性问题。如果出现结果震荡或发散,可能需要减小时间步长或尝试更稳定的数值方法。

  • 初始条件的影响:

     模型的初始条件对求解结果有重要影响。准确的初始条件是获得可靠预测的前提。

  • 总人口数的守恒:

     在数值计算过程中,应检查 S+E+I+R 是否近似等于总人口数 N(允许微小误差)。如果偏差较大,可能表明数值方法存在问题或模型本身存在错误。需要注意的是,如果死亡仓室(Died, D)被显式地包含在模型中,那么 S+E+I+R+D 应该守恒。在本文的简化模型中,死亡个体直接从 I 仓室移除,没有单独的死亡仓室,因此 S+E+I+R 在理论上是变化的,但如果将死亡个体累计起来,总人口是恒定的。五、结论

具有时间依赖性死亡和恢复率的扩展SEIR模型能够更准确地捕捉现实世界中疾病传播的复杂性。由于其常微分方程组通常没有解析解,数值实现成为分析和应用该模型的关键。欧拉法和龙格-库塔法是常用的数值求解方法,其中龙格-库塔法通常能以更高的精度获得结果。

数值实现过程中需要仔细选择数值方法、时间步长,并准确实现时间依赖性函数。通过有效的数值模拟,我们可以分析不同场景下疫情的演变趋势,评估不同干预措施(如疫苗接种、医疗资源投入、公众行为改变)对疾病传播的影响,为疾病防控决策提供科学依据

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值