【优化求解】基于双层粒子群算法的经济调度附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

基于双层粒子群算法的经济调度是一种优化方法,用于在经济调度问题中找到最优的调度方案。经济调度是指在满足生产需求和资源限制的前提下,合理安排生产任务的时间和资源分配,以降低成本、提高效率。

以下是基于双层粒子群算法的经济调度的一般步骤:

  1. 问题建模:将经济调度问题转化为数学模型。确定决策变量、目标函数和约束条件。决策变量可以包括任务的开始时间、完成时间,资源的分配等。目标函数可以是成本最小化、时间最短化等。

  2. 初始化粒子群:随机生成一组粒子,每个粒子代表一个可能的调度方案。粒子的位置表示决策变量的取值,速度表示粒子在搜索空间中的移动方向。

  3. 粒子更新:根据粒子当前位置和速度,计算新的位置和速度。双层粒子群算法包括两个层次的粒子群更新:全局层更新和局部层更新。

    • 全局层更新:根据全局最优解(全局最优粒子)引导粒子的移动方向,以加速全局搜索。

    • 局部层更新:根据局部最优解(局部最优粒子)引导粒子的移动方向,以加速局部搜索。

  4. 适应度评估:根据目标函数和约束条件,计算每个粒子的适应度。适应度可以是目标函数值的倒数,适应度越高表示解越优。

  5. 粒子选择:根据适应度值和一定的选择策略,选择一部分粒子作为父代,用于产生下一代粒子。

  6. 终止条件:根据预设的终止条件(如达到最大迭代次数、收敛程度等),判断是否结束迭代。

  7. 输出结果:选取适应度最好的粒子作为最终的经济调度方案。

⛄ 部分代码

function results=RunInternalPSO(intmodel)      disp('Running Internal PSO ...');      %% Problem Definition      CostFunction=@(x) MyCost(x,intmodel);        % Cost Function      nVar=intmodel.nPlant;             % Number of Decision Variables      VarSize=[1 nVar];   % Size of Decision Variables Matrix      VarMin=0;         % Lower Bound of Variables     VarMax=1;         % Upper Bound of Variables       %% PSO Parameters      MaxIt=100;      % Maximum Number of Iterations      nPop=50;        % Population Size (Swarm Size)      % w=1;            % Inertia Weight     % wdamp=0.99;     % Inertia Weight Damping Ratio     % c1=2;           % Personal Learning Coefficient     % c2=2;           % Global Learning Coefficient      % Constriction Coefficients     phi1=2.05;     phi2=2.05;     phi=phi1+phi2;     chi=2/(phi-2+sqrt(phi^2-4*phi));     w=chi;          % Inertia Weight     wdamp=1;        % Inertia Weight Damping Ratio     c1=chi*phi1;    % Personal Learning Coefficient     c2=chi*phi2;    % Global Learning Coefficient      % Velocity Limits     VelMax=0.1*(VarMax-VarMin);     VelMin=-VelMax;      %% Initialization      empty_particle.Position=[];     empty_particle.Cost=[];     empty_particle.Out=[];     empty_particle.Velocity=[];     empty_particle.Best.Position=[];     empty_particle.Best.Cost=[];     empty_particle.Best.Out=[];      particle=repmat(empty_particle,nPop,1);      BestSol.Cost=inf;      for i=1:nPop          % Initialize Position         particle(i).Position=unifrnd(VarMin,VarMax,VarSize);          % Initialize Velocity         particle(i).Velocity=zeros(VarSize);          % Evaluation         [particle(i).Cost, particle(i).Out]=CostFunction(particle(i).Position);          % Update Personal Best         particle(i).Best.Position=particle(i).Position;         particle(i).Best.Cost=particle(i).Cost;         particle(i).Best.Out=particle(i).Out;          % Update Global Best         if particle(i).Best.Cost<BestSol.Cost              BestSol=particle(i).Best;          end      end      BestCost=zeros(MaxIt,1);       %% PSO Main Loop      for it=1:MaxIt          for i=1:nPop              % Update Velocity             particle(i).Velocity = w*particle(i).Velocity ...                 +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...                 +c2*rand(VarSize).*(BestSol.Position-particle(i).Position);              % Apply Velocity Limits             particle(i).Velocity = max(particle(i).Velocity,VelMin);             particle(i).Velocity = min(particle(i).Velocity,VelMax);              % Update Position             particle(i).Position = particle(i).Position + particle(i).Velocity;              % Velocity Mirror Effect             IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);             particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);              % Apply Position Limits             particle(i).Position = max(particle(i).Position,VarMin);             particle(i).Position = min(particle(i).Position,VarMax);              % Evaluation             [particle(i).Cost, particle(i).Out] = CostFunction(particle(i).Position);              % Update Personal Best             if particle(i).Cost<particle(i).Best.Cost                  particle(i).Best.Position=particle(i).Position;                 particle(i).Best.Cost=particle(i).Cost;                 particle(i).Best.Out=particle(i).Out;                  % Update Global Best                 if particle(i).Best.Cost<BestSol.Cost                      BestSol=particle(i).Best;                  end              end          end          BestCost(it)=BestSol.Cost;          % disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);          w=w*wdamp;      end      %% Reture Results          results.BestSol=BestSol;     results.BestCost=BestCost;      disp('End of Internal PSO.');      end

⛄ 运行结果

⛄ 参考文献

[1] 李程.基于粒子群算法的AS/RS优化调度方法研究[D].陕西科技大学[2023-07-20].

[2] 李浩.基于粒子群优化算法的车间调度系统的研究与设计[D].宁夏大学,2018.DOI:CNKI:CDMD:2.1018.308861.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值