✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
基于双层粒子群算法的经济调度是一种优化方法,用于在经济调度问题中找到最优的调度方案。经济调度是指在满足生产需求和资源限制的前提下,合理安排生产任务的时间和资源分配,以降低成本、提高效率。
以下是基于双层粒子群算法的经济调度的一般步骤:
-
问题建模:将经济调度问题转化为数学模型。确定决策变量、目标函数和约束条件。决策变量可以包括任务的开始时间、完成时间,资源的分配等。目标函数可以是成本最小化、时间最短化等。
-
初始化粒子群:随机生成一组粒子,每个粒子代表一个可能的调度方案。粒子的位置表示决策变量的取值,速度表示粒子在搜索空间中的移动方向。
-
粒子更新:根据粒子当前位置和速度,计算新的位置和速度。双层粒子群算法包括两个层次的粒子群更新:全局层更新和局部层更新。
-
全局层更新:根据全局最优解(全局最优粒子)引导粒子的移动方向,以加速全局搜索。
-
局部层更新:根据局部最优解(局部最优粒子)引导粒子的移动方向,以加速局部搜索。
-
-
适应度评估:根据目标函数和约束条件,计算每个粒子的适应度。适应度可以是目标函数值的倒数,适应度越高表示解越优。
-
粒子选择:根据适应度值和一定的选择策略,选择一部分粒子作为父代,用于产生下一代粒子。
-
终止条件:根据预设的终止条件(如达到最大迭代次数、收敛程度等),判断是否结束迭代。
-
输出结果:选取适应度最好的粒子作为最终的经济调度方案。
⛄ 部分代码
function results=RunInternalPSO(intmodel)
disp('Running Internal PSO ...');
%% Problem Definition
CostFunction=@(x) MyCost(x,intmodel); % Cost Function
nVar=intmodel.nPlant; % Number of Decision Variables
VarSize=[1 nVar]; % Size of Decision Variables Matrix
VarMin=0; % Lower Bound of Variables
VarMax=1; % Upper Bound of Variables
%% PSO Parameters
MaxIt=100; % Maximum Number of Iterations
nPop=50; % Population Size (Swarm Size)
% w=1; % Inertia Weight
% wdamp=0.99; % Inertia Weight Damping Ratio
% c1=2; % Personal Learning Coefficient
% c2=2; % Global Learning Coefficient
% Constriction Coefficients
phi1=2.05;
phi2=2.05;
phi=phi1+phi2;
chi=2/(phi-2+sqrt(phi^2-4*phi));
w=chi; % Inertia Weight
wdamp=1; % Inertia Weight Damping Ratio
c1=chi*phi1; % Personal Learning Coefficient
c2=chi*phi2; % Global Learning Coefficient
% Velocity Limits
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;
%% Initialization
empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Out=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
empty_particle.Best.Out=[];
particle=repmat(empty_particle,nPop,1);
BestSol.Cost=inf;
for i=1:nPop
% Initialize Position
particle(i).Position=unifrnd(VarMin,VarMax,VarSize);
% Initialize Velocity
particle(i).Velocity=zeros(VarSize);
% Evaluation
[particle(i).Cost, particle(i).Out]=CostFunction(particle(i).Position);
% Update Personal Best
particle(i).Best.Position=particle(i).Position;
particle(i).Best.Cost=particle(i).Cost;
particle(i).Best.Out=particle(i).Out;
% Update Global Best
if particle(i).Best.Cost<BestSol.Cost
BestSol=particle(i).Best;
end
end
BestCost=zeros(MaxIt,1);
%% PSO Main Loop
for it=1:MaxIt
for i=1:nPop
% Update Velocity
particle(i).Velocity = w*particle(i).Velocity ...
+c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...
+c2*rand(VarSize).*(BestSol.Position-particle(i).Position);
% Apply Velocity Limits
particle(i).Velocity = max(particle(i).Velocity,VelMin);
particle(i).Velocity = min(particle(i).Velocity,VelMax);
% Update Position
particle(i).Position = particle(i).Position + particle(i).Velocity;
% Velocity Mirror Effect
IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);
particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);
% Apply Position Limits
particle(i).Position = max(particle(i).Position,VarMin);
particle(i).Position = min(particle(i).Position,VarMax);
% Evaluation
[particle(i).Cost, particle(i).Out] = CostFunction(particle(i).Position);
% Update Personal Best
if particle(i).Cost<particle(i).Best.Cost
particle(i).Best.Position=particle(i).Position;
particle(i).Best.Cost=particle(i).Cost;
particle(i).Best.Out=particle(i).Out;
% Update Global Best
if particle(i).Best.Cost<BestSol.Cost
BestSol=particle(i).Best;
end
end
end
BestCost(it)=BestSol.Cost;
% disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
w=w*wdamp;
end
%% Reture Results
results.BestSol=BestSol;
results.BestCost=BestCost;
disp('End of Internal PSO.');
end
⛄ 运行结果
⛄ 参考文献
[1] 李程.基于粒子群算法的AS/RS优化调度方法研究[D].陕西科技大学[2023-07-20].
[2] 李浩.基于粒子群优化算法的车间调度系统的研究与设计[D].宁夏大学,2018.DOI:CNKI:CDMD:2.1018.308861.
⛳️ 代码获取关注我
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
🍅 仿真咨询
1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长