✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 概述
抛物线是一种常见的几何图形,在图像处理和计算机视觉领域有着广泛的应用,如图像分割、目标识别和运动跟踪等。本文将介绍一种基于 Hough 变换的抛物线检测算法,该算法可以有效地从图像中检测出抛物线。
2. Hough 变换原理
Hough 变换是一种用于检测图像中特定形状的算法。其基本原理是将图像中的每个点映射到一个参数空间,在参数空间中,特定形状的点会聚集在一条直线上。因此,我们可以通过检测参数空间中的直线来找到图像中的特定形状。
3. 抛物线检测算法
抛物线检测算法的步骤如下:
-
将图像转换为灰度图像。
-
使用 Canny 边缘检测算子检测图像中的边缘。
-
将边缘点映射到参数空间。
-
在参数空间中检测直线。
-
将直线映射回图像空间,得到抛物线。
📣 部分代码
bridge= imread('gateway_arch.jpg');
%imshow(bridge, []);
%E = edge(I, 'method' , THRESH , SIGMA);
E= edge(bridge, 'canny',0.3,0.9);
%figure, imshow(E,[]);
%Choose parabola sizes to try
C= 0.01:0.001:0.015;
c_length= numel(C);
[M, N]= size(bridge);
%Accumulator array H(M,N,C) initialized with zeros
H= zeros(M, N, c_length);
%Vote to fill H
⛳️ 运行结果
总结
抛物线检测算法是一种基于 Hough 变换的有效算法,可以从图像中检测出抛物线。该算法可以应用于图像分割、目标识别和运动跟踪等领域。
🔗 参考文献
[1] 韩涛,杨洋.基于Hough变换的图像目标检测与识别[J].计算机与数字工程, 2019, 47(2):5.DOI:10.3969/j.issn.1672-9722.2019.02.031.
[2] 曲长文,黄勇,苏峰,等.基于坐标变换与随机Hough变换的抛物线运动目标检测算法[J].电子与信息学报, 2005, 27(010):1573-1575.DOI:CNKI:SUN:DZYX.0.2005-10-015.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类