风电、光伏与抽水蓄能电站互补调度运行研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球气候变化日益严峻,能源结构转型已成为全球共识。作为重要的清洁能源,风电和光伏发电在近年来取得了飞速发展。然而,风电和光伏发电固有的间歇性、波动性和随机性特征,给电力系统的安全稳定运行带来了挑战。如何有效消纳大规模并网的风电和光伏,提高可再生能源的渗透率,是当前能源领域亟需解决的关键问题。抽水蓄能电站作为一种成熟的物理储能技术,以其响应速度快、调节容量大、充放电效率高、运行寿命长等优点,在电力系统中承担着调峰、填谷、备用和调频等多种功能,为平抑风电和光伏发电的波动性提供了强有力的支撑。因此,深入研究风电、光伏与抽水蓄能电站的互补调度运行机制,对于构建新型电力系统,实现能源可持续发展具有至关重要的意义。

一、 风电、光伏与抽水蓄能电站特性分析

为了有效地开展互补调度运行研究,首先需要深入理解三者的运行特性。

  • 风电和光伏发电特性:

    • 间歇性与波动性:

       风速和光照强度受自然条件影响,具有高度的随机性和不确定性,导致风电和光伏发电出力随时间波动剧烈,无法持续稳定输出。

    • 反调峰特性:

       在某些地区,风电和光伏发电的大出力时段可能与电力系统负荷低谷时段重合,产生“弃风”、“弃光”现象,而负荷高峰时段出力不足,难以满足调峰需求。

    • 弱惯性特性:

       相较于传统同步发电机,风电机组和光伏逆变器缺乏旋转质量,无法提供足够的惯性支撑,降低了电力系统的频率稳定性。

  • 抽水蓄能电站特性:

    • 双向调节能力:

       抽水蓄能电站既可以作为负荷进行抽水,储存电能,又可以作为电源进行发电,释放电能,具有灵活的双向调节能力。

    • 快速响应能力:

       抽水蓄能电站从抽水模式切换到发电模式,或从发电模式切换到抽水模式,响应速度快,能够迅速响应电力系统的调度指令。

    • 大容量调节能力:

       抽水蓄能电站的装机容量和库容设计灵活,能够提供大规模的调节容量,有效平抑大规模风电和光伏的波动。

    • 物理储能优势:

       相比于电化学储能等技术,抽水蓄能电站具有运行寿命长、成本相对较低、技术成熟可靠等优点。

二、 风电、光伏与抽水蓄能电站互补调度运行的必要性与优势

将风电、光伏与抽水蓄能电站进行互补调度运行,能够充分发挥各自的优势,弥补其不足,从而显著提升电力系统的运行效率和可靠性。

  • 平抑风电和光伏的波动性:

     在风电和光伏出力富余时,抽水蓄能电站可以进行抽水,将多余电能转化为势能储存起来,避免弃风弃光;在风电和光伏出力不足时,抽水蓄能电站可以进行发电,弥补发电缺额,保障电力供应稳定。

  • 优化电力系统调峰性能:

     利用抽水蓄能电站的快速响应和大容量调节能力,可以在负荷高峰时段进行发电,在负荷低谷时段进行抽水,有效地实现“削峰填谷”,优化电力系统负荷曲线。

  • 提高可再生能源消纳水平:

     通过互补调度,可以将原本难以消纳的间歇性可再生能源转化为可调度、可控制的清洁能源,大幅提高可再生能源在电力系统中的渗透率。

  • 增强电力系统备用能力:

     抽水蓄能电站可以作为旋转备用和非旋转备用,在系统出现紧急情况时快速启动发电,提高电力系统的事故应对能力。

  • 提供频率调节服务:

     抽水蓄能电站能够提供快速的功率响应,参与电力系统的频率调节,增强系统的频率稳定性。

  • 降低电力系统运行成本:

     通过优化调度,可以减少燃煤等传统化石能源的发电量,降低燃料成本和污染物排放,同时提高设备利用率,降低运行维护成本。

三、 风电、光伏与抽水蓄能电站互补调度运行模式

互补调度运行模式可以根据不同的调度目标和系统需求进行设计,主要包括以下几种:

  • 基于预测的协同调度:

     利用高精度的风电和光伏功率预测技术,结合负荷预测,制定未来一段时间内的风电、光伏和抽水蓄能电站的发电/抽水计划。在预测出力富余时安排抽水,预测出力不足时安排发电,实现计划性互补运行。

  • 实时优化调度:

     基于实时的风电、光伏出力以及系统负荷变化,动态调整抽水蓄能电站的运行模式,实现毫秒级或秒级响应,应对短时波动,维持系统平衡。

  • 分层分时优化调度:

     将调度周期分解为日内、小时级甚至分钟级,采用不同的优化模型和算法,实现多时间尺度的协同优化。例如,日内制定发电计划,小时级进行修正,分钟级进行实时调整。

  • 市场化辅助服务:

     将抽水蓄能电站作为独立的市场主体参与电力市场交易,提供调峰、调频、备用等辅助服务,通过市场信号引导抽水蓄能电站与风电、光伏进行协同运行,提高经济效益。

  • 基于人工智能和大数据技术的调度:

     利用人工智能算法对海量运行数据进行分析,学习风电、光伏和抽水蓄能电站的运行规律,预测未来出力和负荷,从而实现更智能、更精细的调度策略

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值