【无人机三维路径规划Matlab代码】基于蒲公英算法DO实现复杂地形无人机避障三维航迹规划

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍​

随着无人机技术的飞速发展,无人机在复杂地形环境下的避障三维航迹规划问题日益受到关注。本文提出了一种基于蒲公英算法(DO)的无人机避障三维航迹规划算法。该算法利用蒲公英算法的全局搜索能力和局部开发能力,有效地解决了复杂地形环境下的避障问题,并优化了航迹的平滑性和可行性。仿真结果表明,该算法能够有效地规划出满足避障要求、平滑且可行的三维航迹,为无人机在复杂地形环境下的安全飞行提供了理论基础。

1. 蒲公英算法(DO)

蒲公英算法(DO)是一种基于蒲公英传播机制的元启发式算法。算法的主要思想是模拟蒲公英种子的传播过程,通过种子的随机飞行和局部搜索来实现全局最优解的搜索。

1.1 种子初始化

算法首先随机初始化一组种子,每个种子代表一个候选解。种子的位置由其坐标向量表示。

1.2 种子飞行

在飞行阶段,每个种子根据其当前位置和速度进行随机飞行。飞行的距离和方向由一个随机向量决定。

1.3 种子着陆

当种子飞行到一定距离后,它将着陆到一个新的位置。着陆位置由种子的当前位置和速度决定。

1.4 种子萌发

着陆后,种子会萌发并产生新的种子。新种子的位置由其父种子的位置和一个随机扰动决定。

1.5 种子选择

在每个迭代结束时,算法会根据种子的适应度值选择最优的种子。适应度值通常由目标函数的值决定。

2. 避障三维航迹规划模型

2.1 航迹表示

航迹由一组三维点组成,每个点表示无人机在该时刻的位置。航迹的平滑性通过相邻点之间的距离和角度差来衡量。

2.2 避障约束

避障约束包括地形约束和障碍物约束。地形约束要求航迹不能与地形相交,障碍物约束要求航迹不能与障碍物相交。

2.3 目标函数

目标函数由航迹的平滑性、避障性和可行性三个部分组成。平滑性由相邻点之间的距离和角度差来衡量,避障性由航迹与地形和障碍物的最小距离来衡量,可行性由航迹是否满足速度和高度约束来衡量。

3. 基于 DO 的避障三维航迹规划算法

3.1 种子编码

种子由一组三维点组成,每个点表示航迹上的一个点。

3.2 种子适应度计算

种子的适应度值由目标函数的值决定。目标函数值越小,适应度值越高。

3.3 种子飞行

在飞行阶段,每个种子根据其当前位置和速度进行随机飞行。飞行的距离和方向由一个随机向量决定。

3.4 种子着陆

当种子飞行到一定距离后,它将着陆到一个新的位置。着陆位置由种子的当前位置和速度决定。

3.5 种子萌发

着陆后,种子会萌发并产生新的种子。新种子的位置由其父种子的位置和一个随机扰动决定。

3.6 种子选择

在每个迭代结束时,算法会根据种子的适应度值选择最优的种子。最优种子代表当前最优的航迹。

3.7 算法流程

  1. 初始化种群。

  2. 计算种群中每个种子的适应度值。

  3. 根据适应度值选择最优的种子。

  4. 对最优种子进行飞行、着陆和萌发操作。

  5. 重复步骤 2-4,直到达到终止条件。

4. 仿真结果

为了验证算法的有效性,在复杂地形环境下进行了仿真实验。仿真结果表明,该算法能够有效地规划出满足避障要求、平滑且可行的三维航迹。

4.1 避障性能

仿真结果表明,该算法规划出的航迹能够有效地避开地形和障碍物。航迹与地形和障碍物的最小距离均大于安全距离。

4.2 平滑性

仿真结果表明,该算法规划出的航迹具有良好的平滑性。相邻点之间的距离和角度差均较小,航迹整体呈现出平滑的曲线。

4.3 可行性

仿真结果表明,该算法规划出的航迹满足速度和高度约束。无人机能够沿着航迹安全飞行。

5. 结论

本文提出了一种基于蒲公英算法(DO)的无人机避障三维航迹规划算法。该算法利用蒲公英算法的全局搜索能力和局部开发能力,有效地解决了复杂地形环境下的避障问题,并优化了航迹的平滑性和可行性。仿真结果表明,该算法能够有效地规划出满足避障要求、平滑且可行的三维航迹,为无人机在复杂地形环境下的安全飞行提供了理论基础。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

🔗 参考文献

[1] 张涛,李少波,张安思,等.基于改进人工鱼群算法的复杂地貌无人机三维路径规划[J].科学技术与工程, 2023.

[2] 张涛,李少波,张安思,等.基于改进人工鱼群算法的复杂地貌无人机三维路径规划[J].科学技术与工程, 2023, 23(10):4433-4439.

[3] 史志远.无人机三维路径规划与控制算法研究[J].[2024-03-09].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值