【车牌识别】基于模板匹配算法实现车牌识别附MATLAB代码和报告

​✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

中文摘要:随着二十一世纪到来,经济快速发展和人们生活水平显著提高,汽车逐渐成为家庭的主要交通工具。汽车的产量快速增多,车辆流动也变得越来越频繁,因此给交通带来了严重问题,如交通堵塞、交通事故等,智能交通系统(Intelligent Transportation System)的产生就是为了从根本上解决交通问题。在智能交通系统中车牌识别技术占有重要位置,车牌识别技术的推广普及必将对加强道路管理、城市交通事故、违章停车、处理车辆被盗案件、保障社会稳定等方面产生重大而深远的影响。

该设计主要研究基于MATLAB软件的汽车号牌设别系统设计,系统主要包括图像采集、图像预处理、车牌定位、字符分割、字符识别五大核心部分。系统的图像预处理模块是将图像经过图像灰度化、图像增强、边缘提取、二值化等操作,转换成便于车牌定位的二值化图像;利用车牌的边缘、形状等特征,再结合Roberts 算子边缘检测、数字图像、形态学等技术对车牌进行定位;字符的分割采用的方法是将二值化后的车牌部分进行寻找连续有文字的块,若长度大于设定的阈值则切割,从而完成字符的分割;字符识别运用模板匹配算法完成。以上每个功能模块用MATLAB软件实现,最后识别出车牌,在研究设计的同时对其中出现的问题进行具体分析、处理,并寻求更优的方法。

一、总体设计

汽车号牌识别系统技术是从一幅车辆图像中准确定位出车牌区域,然后经过字符切割和字符识别来实现车辆牌照的自动识别。主要流程图如下:

1.1

二、总体功能模块

基于MATLAB车牌识别系统主要包括图像采集、图像预处理、车牌定位、字符分割、字符识别五个关键环节[11],其基本工作如下:

(1) 图像采集:使用摄像头、照相机拍摄采集图像。

(2) 图像预处理:把图像转换成便于定位的二值化图像,需要经过图像灰度化、图像

增强、边缘提取、二值化操作。

(3)车牌定位:利用车牌的边缘、形状等特征,再结合Roberts 算子边缘检测、数字

图像、形态学等技术对车牌进行定位。

(4)字符分割:以二值化后的车牌部分进行寻找连续有文字的块,若长度大于设定的

阈值则切割,从而完成字符的分割。

(5)字符识别:运用模板匹配算法将分割后的字符二值化,并将其尺寸大小缩放为模

板库中字符的大小,然后与所有的模板进行匹配,准确地识别车牌。输出识别

结果,并进行数据存储。

由于纹理特征车牌灰度图像的边缘、图像水平方向上的方差、水平方向上的梯度等比较稳定而且易于提取,所以本系统车牌定位算法采用纹理特征作为车牌的主要特征。在汽车号牌字符识别中,由于汉字的复杂性所以本设计的模板库字符包含5个汉字,26个大写英文字母及10个阿拉伯数字。首字符为汉字,第2-6个字符为英文字母或数字。本系统采用的是边缘检测的方法实现车牌定位的,寻找连续有文字的块的方法实现字符分割,模板匹配法来确定最终的识别结果。

三、具体设计

下图3.1流程图简要的概述了基本步骤:

五、 分析总结

汽车号牌识别系统是一个复杂的系统,考虑到时间和本人能力等因素,在这里我只做了一些初步的研究,很不够完善的地方,还需进一步的研究改进。

(1)汽车号牌识别系统是针对车牌为蓝底白字,7个字符水平排列的汽车车牌进行研

究。有些光照条件不理想的图片,需要先进行图象增强处理,让图象灰度动态范

围扩展和对比度增强,再进行车牌定位和分割,这样可以提高分割的成功率。色

彩通道的车牌区域分割算法充分利用了车牌图象的色彩信息,简化了算法的实现,

加快了图象的处理速度,具有较高的正确率,而且整个程序用MATLAB语言编

程实现,运算速度快。但是也存在一些识别效果不是很理想的图片,这些图片需

要做一些前提工作后才能识别出相应的字符。

(2)车牌定位和分割中利用的车牌区域的宽度信息以及字符尺寸信息,是根据采集到

的车辆图像通过人工或者经验测算出来的,实际中需要自动检测;

(3)由于基于寻找连续有文字的块的字符分割方法容易受噪声和环境光线变化的影

响,所以在车牌字符分割的预处理中,需要对分割出的字符车牌进行均值滤波,

膨胀或腐蚀的处理。经过这些处理可以把字符与字符之间的杂色点去除,只有白

色的字符和黑色的背景存在,有利于的字符分割进行[19]。

(4)字符识别方法中运用模板匹配的方法,方法简洁但识别率较低。模板匹配法,是

利用要识别的字符图片与字符库中的图片进行两幅图片相减的方法,找到相减后

值最小的图片,其相似程度最大的。模板库的字符制作很重要,必须要用精确的

模板,否则就不能正确的识别。

改进方法:

(1)在现有的基础上利用水平投影的方法检测非横向排列的7个字符车牌,根据车牌在水平方向上的投影的峰值特征判断牌照所属类型。

(2)在已定位车牌基础上检测牌照字符笔画的宽度,通过投影检测字符的尺寸信息;也可以通过摄像机架设的高度、角度与车道的关系,将这些参数作为系统参数进。

(3)改进字符分割的算法,在车牌定位以后对图像进行去噪处理,或者可以通过照明设备照射车辆,由于车辆牌照区域的反光特性,可以大大改善图像采集的质量,同时突出牌照区域,间接达到减少噪声的效果。

(4)可以考虑单独设备汉字识别器以及数字字母合一的识别来提高识别器的识别率!

📣 部分代码

function[word,result]=getword(d)word=[];flag=0;y1=8;y2=0.5;while flag==0    [m,n]=size(d);    wide=0;    while sum(d(:,wide+1))~=0 && wide<=n-2        wide=wide+1;    end    temp=qiege(imcrop(d,[1 1 wide m]));%用于返回图像的一个裁剪区域    [m1,n1]=size(temp);    if wide<y1 && n1/m1>y2        d(:,[1:wide])=0;        if sum(sum(d))~=0            d=qiege(d);%切割出最小范围        else word=[];flag=1;        end    else        word=qiege(imcrop(d,[1 1 wide m]));        d(:,[1:wide])=0;        if sum(sum(d))~=0;            d=qiege(d);            flag=1;        else d=[];        end    endendresult=d;

⛳️ 运行结果

🔗 参考文献

[1]张笑飞,张翔,曾虹.基于FPGA的实时车牌字符识别方法的研究[J].杭州电子科技大学学报:自然科学版, 2007(6):3.DOI:10.3969/j.issn.1001-9146.2007.06.017.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值