✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
大规模 MIMO 技术是满足 5G 和未来无线通信系统不断增长的容量和覆盖需求的关键技术。然而,大规模 MIMO 系统中的导频污染是一个关键挑战,它会降低信道估计的精度并影响系统性能。本文提出了一种基于图着色的试点分配算法,用于大规模 MIMO 网络上行链路中的导频去污染和信道估计。该算法利用图着色理论来分配试点,以最大化试点之间的距离并最小化导频污染。此外,该算法还考虑了功率放大器 (PA) 的非线性失真,以进一步提高信道估计的精度。仿真结果表明,所提出的算法在降低导频污染和提高信道估计精度方面优于现有方法。
引言
大规模 MIMO 技术通过在基站部署大量天线来显着提高无线通信系统的容量和覆盖范围。然而,大规模 MIMO 系统中的导频污染是一个主要挑战。导频污染是指由于相邻天线使用相同的导频而导致的导频信号之间的干扰。导频污染会降低信道估计的精度,从而影响系统性能。
基于图着色的试点分配算法
为了解决导频污染问题,本文提出了一种基于图着色的试点分配算法。该算法将大规模 MIMO 网络建模为一个图,其中天线表示图中的顶点,而导频表示图中的边。试点分配问题转化为一个图着色问题,其中目标是为每个天线分配一个颜色(导频),以最大化颜色(导频)之间的距离并最小化颜色冲突(导频污染)。
该算法采用贪心着色策略。首先,算法为每个天线分配一个唯一的颜色。然后,算法迭代地为未着色的天线分配颜色。在每个迭代中,算法选择一个未着色的天线,并为其分配与相邻天线颜色距离最大的颜色。该过程持续进行,直到所有天线都着色。
考虑 PA 非线性失真的信道估计
大规模 MIMO 系统中通常使用功率放大器 (PA) 来提高发射功率。然而,PA 会引入非线性失真,这会影响信道估计的精度。为了解决这个问题,本文提出了一种考虑 PA 非线性失真的信道估计算法。该算法利用 PA 的非线性模型来补偿非线性失真对导频信号的影响。
该算法首先估计 PA 的非线性模型。然后,算法使用该模型来补偿非线性失真对导频信号的影响。最后,算法使用补偿后的导频信号进行信道估计。
仿真结果
仿真结果表明,所提出的基于图着色的试点分配算法优于现有方法。该算法显着降低了导频污染,并提高了信道估计的精度。此外,所提出的考虑 PA 非线性失真的信道估计算法进一步提高了信道估计的精度。
结论
本文提出了一种基于图着色的试点分配算法,用于大规模 MIMO 网络上行链路中的导频去污染和信道估计。该算法利用图着色理论来分配试点,以最大化试点之间的距离并最小化导频污染。此外,该算法还考虑了功率放大器 (PA) 的非线性失真,以进一步提高信道估计的精度。仿真结果表明,所提出的算法在降低导频污染和提高信道估计精度方面优于现有方法。
📣 部分代码
function [P,N] = F_WGCPA(L, K, S, Beta)
N = S;
%=====ZC=====%
pilot = F_ZC(N,S);
eta = zeros(L,K,L,K);
for i1 = 1:L
for k1 = 1:K % pilot contamination strength calculation
for i2 = 1:L
for k2 = 1:K
if (i1~=i2)
eta(i1,k1,i2,k2) = Beta(k1,i2,i1)^2/Beta(k2,i2,i2)^2+Beta(k2,i1,i2)^2/Beta(k1,i1,i1)^2;
end
end
end
end
end
P = zeros(N,K,L);
eta_max = 0;
for j_bs = 1:L % First 2 users pilot assignment
for k_user = 1:K
for j1_bs = 1:L
for k1_user = 1:K
if j_bs~=j1_bs && eta(j_bs,k_user,j1_bs,k1_user)>eta_max
j_2 = j_bs;
k_2 = k_user;
j_1 = j1_bs;
k_1 = k1_user;
eta_max = eta(j_bs,k_user,j1_bs,k1_user);
end
end
end
end
end
P(:,k_2,j_2) = pilot(:,2);
P(:,k_1,j_1) = pilot(:,1);
for t = 3:L*K % Pilot assignment for other users
delta = zeros(L,K); % UE selection
delta_max = 0;
for j = 1:L
for k = 1:K
if P(1,k,j) == 0
for j1 = 1:L
for k1 = 1:K
if j~=j1 && P(1,k1,j1)~=0
delta(j,k) = delta(j,k) + eta(j,k,j1,k1);
end
end
end
if delta(j,k)>delta_max
j_0 = j;
k_0 = k;
delta_max = delta(j,k);
end
end
end
end
C = zeros(1,S); % Pilot selection
for k = 1:K
for s = 1:S
if P(:,k,j_0) == pilot(:,s)
C(s) = 1;
end
end
end
zeta = zeros(1,S);
for j = 1:L
for k = 1:K
for s = 1:S
if P(:,k,j) == pilot(:,s)
zeta(s) = zeta(s) + eta(j,k,j_0,k_0);
end
end
end
end
zeta_min = 1000;
c0 = 0;
for k = 1:S
if zeta(k)<zeta_min && C(k)==0
zeta_min = zeta(k);
c0 = k;
end
end
P(:,k_0,j_0) = pilot(:,c0);
end
end
⛳️ 运行结果
🔗 参考文献
[1] 周瑞锋.导频污染下大规模MIMO系统的导频分配及信道估计的研究[D].南京邮电大学,2020.
[2] 黄雪凤.基于聚类的无小区大规模MIMO系统信道估计和导频分配研究[D].哈尔滨工业大学[2024-03-17].
[3] 韩文杰.大规模MIMO上行链路系统中导频分配和功率分配研究[J].[2024-03-17].
[4] 姬晓娜.大规模MIMO信道估计中导频污染问题研究[D].郑州大学,2016.
[5] 肖海林,何怡玲,胡智群,等.无小区大规模MIMO系统中基于图着色的导频分配与功率控制算法[J].信号处理, 2023, 39(7):1309-1318.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类