【VRP问题】基于遗传算法GA求解考虑固定成本、运输、 货损、 制冷、时间窗惩罚成本的车辆冷链配送路径规划附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

1. 问题描述

冷链配送是指在生产、储存、运输、销售等环节中,始终保持食品处于适宜的低温环境下,以保证食品质量和安全。车辆冷链配送路径规划是冷链配送中的重要环节,其目标是在满足客户需求的前提下,最小化配送成本。

考虑固定成本、运输成本、货损成本、制冷成本、时间窗惩罚成本的车辆冷链配送路径规划问题是一个复杂的NP难问题。该问题涉及多个约束条件,如:

  • 车辆容量限制

  • 时间窗限制

  • 温度限制

  • 货损率限制

2. 遗传算法(GA)

遗传算法是一种受生物进化启发的优化算法。它通过模拟自然选择和遗传机制,在解空间中搜索最优解。GA的基本步骤如下:

  1. 初始化种群

  2. 计算个体的适应度

  3. 选择个体进行交叉和变异

  4. 产生新的种群

  5. 重复步骤2-4,直到达到终止条件

3. GA求解冷链配送路径规划问题

3.1 个体编码

使用染色体表示配送路径,每个基因代表一个配送点。染色体长度等于配送点数量。

3.2 适应度函数

适应度函数衡量个体的优劣程度。本问题中,适应度函数为配送成本的倒数:

 

fitness = 1 / (fixed_cost + transportation_cost + damage_cost + refrigeration_cost + time_window_penalty_cost)

3.3 交叉算子

采用顺序交叉算子。随机选择两个父染色体,在随机选择的交叉点处交换基因,产生两个子染色体。

3.4 变异算子

采用逆转变异算子。随机选择两个基因,将其之间的基因顺序逆转。

3.5 终止条件

当种群达到最大进化代数或适应度值不再明显改善时,终止进化。

4. 实验结果

在不同规模的测试实例上进行了实验。实验结果表明,GA算法能够有效求解冷链配送路径规划问题,并获得高质量的解。

5. 结论

本文提出了一种基于遗传算法求解考虑固定成本、运输成本、货损成本、制冷成本、时间窗惩罚成本的车辆冷链配送路径规划问题的算法。实验结果表明,该算法能够有效求解该问题,并获得高质量的解。该算法可为冷链配送企业提供一种有效的决策支持工具,帮助其优化配送路径,降低配送成本。

📣 部分代码

function loadb_GUI(handles, dataorInstr)%% load data files for dippamnu = menu('Choose data to load:','2-Theta','1/d');inner(handles, mnu, dataorInstr)endfunction inner(handles, mnu, dataorInstr)haxes = handles.axes1;    data=[];    %find file location    [file,  path] = uigetfile({'*.dat';'*.asc';'*.UDF';'*.udf';'*.txt';'*.xy'},'Select File to open')    %% for udfs    if strcmp(file(end-2:end),'udf')  || strcmp(file(end-2:end),'UDF')        %convert udf to .dat        if strcmp(file(end-2:end),'udf')             perl([cd,'/udfcon_lc.pl'],[path,file(1:end-4),'.udf']);         elseif strcmp(file(end-2:end),'UDF' )            perl([cd,'/udfcon.pl'],[path,file(1:end-4),'.UDF']);        end                %and load the dat file        filenomdat=[path,file(1:end-4),'.dat'];        data=load(filenomdat);            %get the info from the sample        [tube, identa]=importfile([path,file]);                %what type of tube        if strcmp(tube,'Cu')==1              wavelen=0.5*(1.54056+1.54439);%%        elseif strcmp(tube,'Co')==1            wavelen= 0.5*(1.78897+ 1.79285);%%in Armstrongs        end                %update prefs                setDPPApref('tube',tube)        disp(['setting tube as',tube])            %update GUI        set(handles.alpha2_b,'value',1);            %alpha 2 exists        alpha2=0;        setDPPApref('alpha2',alpha2)        setDPPApref('wavelen',wavelen)            elseif strcmp(file(end-2:end),'asc')  || strcmp(file(end-2:end),'ASC')    %% if an ascii file        %gets data from ascii    fid=fopen([path, file]);    tex = textscan(fid, '%q', 'delimiter', '\n');    h=1;c=0;    for n=1:size(tex{1});        if strcmp(tex{1}{n}(1),'#')==0;            if h==1;c=c+1;end;            dat{c}(h,:)=str2num(char(tex{1}{n}));h=h+1;        else h=1;        end;    end        data=dat{1};        %user input for type of tube    wav=menu('Enter Wavelength in A:   ','Copper with alpha2','Cobalt with alpha2','(without alpha2) Enter value in Armstrongs:     ');    switch wav        case 1            wavelen=0.5*(1.54056+1.54439);%%            tube='Cu';alpha2=0;            set(handles.alpha2_b,'value',1);        case 2            wavelen= 0.5*(1.78897+ 1.79285);%%in Armstrongs            tube='Co';alpha2=0;            set(handles.alpha2_b,'value',1);        case 3            wavelen= input('enter wavelength in A:  ');            set(handles.alpha2_b,'value',0);            alpha2=1;            tube='None';    end        %update prefs    setDPPApref('alpha2',alpha2)    setDPPApref('tube',tube)    setDPPApref('wavelen',wavelen)            else    %% not a udf or ascii    wav=menu('Enter Wavelength in A:   ','Copper with alpha2','Cobalt with alpha2','(without alpha2) Enter value in Armstrongs:     ');    switch wav        case 1            wavelen=0.5*(1.54056+1.54439);%%            tube='Cu';alpha2=0;            set(handles.alpha2_b,'value',1);        case 2            wavelen= 0.5*(1.78897+ 1.79285);%%in Armstrongs            tube='Co';alpha2=0;            set(handles.alpha2_b,'value',1);        case 3            wavelen= input('enter wavelength in A:  ');            set(handles.alpha2_b,'value',0);            alpha2=1;            tube='None';    end        %update prefs    setDPPApref('alpha2',alpha2)    setDPPApref('tube',tube)    setDPPApref('wavelen',wavelen)%         if file(end-2:end)=='.xy'        da=importdata([path,file]);        data=da.data;    else        data=load([path,file]);    end        if size(data,2)>2        val=input(['Select column(s) to use, of ',num2str(size(data,2)),'    ']);        data(:,2)=sum(data(:,val),2)';data=data(:,1:2);    else    data=data(:,1:2);    end            identa=input('Enter Sample name:   ','s');    end            %% interpolateval=mnu;switch val    case 2%1/d        K = data(:,1); Kincr=.5e-04;        rk=rem(K(1),Kincr);        K1=K(1)-rk;K1=K1/Kincr;K1=int16(K1);K1=double(K1)*Kincr;        rk=rem(K(end),Kincr);        Kend=K(end)-rk; cc(:,1)=K1:Kincr:Kend;        IK=interp1(K(:,1),data(:,2),cc(:,1),'PCHIP');        data = [cc , IK];    case 1%two-theta        data=tsinterpl(data,wavelen);endhold(haxes,'off')semilogy(data(:,1),data(:,2),'.','parent',haxes)% set(handles.sampleid2_t,'string',identa)set(handles.wav_t,'string',num2str(wavelen))setDPPApref('identa',identa);setDPPApref('alpha2',alpha2);       setDPPApref('tube',tube);setDPPApref('wavelen',wavelen);if strcmp(dataorInstr,'Sampl')    save([cd,'/0. variables/data.mat'],'data')elseif strcmp(dataorInstr,'Instr')    data_I = data;    save([cd,'/0. variables/data_I.mat'],'data_I')endend

⛳️ 运行结果

🔗 参考文献

[1] 李慧慧.考虑碳排放的冷链物流多温共配优化研究[D].大连海事大学,2017.DOI:CNKI:CDMD:2.1018.035652.

[2] 段思明.随机需求下带时间窗的城市农产品冷链物流配送优化问题研究[D].浙江工业大学,2019.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值