【GPR回归预测】基于粒子群算法优化高斯过程回归PSO-GPR实现光伏预测附matlab代码

本文介绍了一种结合粒子群算法(PSO)优化高斯过程回归(GPR)的模型PSO-GPR,用于提高光伏发电功率预测的精度。PSO-GPR通过优化GPR的超参数,克服了传统方法的不足,实验结果显示其预测性能优于其他模型。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

1. 引言

光伏发电作为一种清洁可再生能源,近年来发展迅速。然而,光伏发电受天气条件影响较大,其输出功率具有随机性和波动性,给电网运行带来挑战。因此,准确预测光伏发电功率对于提高电网稳定性和利用率至关重要。

高斯过程回归(GPR)是一种强大的非参数回归模型,它可以有效地处理非线性数据和不确定性。然而,GPR模型的超参数选择对预测精度有显著影响。粒子群算法(PSO)是一种高效的全局优化算法,可以有效地解决高维非线性优化问题。

本文提出了一种基于粒子群算法优化高斯过程回归的模型(PSO-GPR)用于光伏发电功率预测。该模型利用PSO算法优化GPR模型的超参数,以提高预测精度。

2. 相关工作

近年来,许多学者对光伏发电功率预测进行了研究。其中,一些研究使用了传统的时间序列模型,如ARIMA和SARIMA模型,但这些模型对非线性数据的预测精度有限。一些研究使用了机器学习模型,如支持向量机(SVM)和人工神经网络(ANN),但这些模型需要大量的数据训练,并且对模型结构和参数的选择敏感。

GPR模型是一种强大的非参数回归模型,它可以有效地处理非线性数据和不确定性。然而,GPR模型的超参数选择对预测精度有显著影响。一些研究使用网格搜索和贝叶斯优化等方法优化GPR模型的超参数,但这些方法计算量大,效率低。

PSO是一种高效的全局优化算法,可以有效地解决高维非线性优化问题。一些研究将PSO算法应用于GPR模型的超参数优化,取得了良好的效果。

3. PSO-GPR模型

3.1 高斯过程回归

高斯过程回归是一种基于贝叶斯理论的非参数回归模型。它假设数据服从高斯分布,并使用高斯过程来描述数据的先验分布和后验分布。高斯过程回归模型的预测结果不仅包括预测值,还包括预测的不确定性。

3.2 粒子群算法

粒子群算法是一种基于群体智能的优化算法。它模拟鸟群觅食的行为,通过粒子之间的信息共享和竞争,最终找到最优解。粒子群算法具有收敛速度快、鲁棒性强等优点。

3.3 PSO-GPR模型

PSO-GPR模型将PSO算法应用于GPR模型的超参数优化。PSO算法负责搜索最优的超参数组合,GPR模型负责根据最优的超参数组合进行预测。PSO-GPR模型的流程如下:

  1. 初始化粒子群,设置粒子位置和速度。

  2. 计算每个粒子的适应度,即GPR模型在当前超参数组合下的预测误差。

  3. 更新粒子位置和速度,并根据粒子之间的信息共享和竞争,找到最优的超参数组合。

  4. 使用最优的超参数组合训练GPR模型。

  5. 使用训练好的GPR模型进行预测。

4. 结论

本文提出了一种基于粒子群算法优化高斯过程回归的模型(PSO-GPR)用于光伏发电功率预测。该模型利用PSO算法优化GPR模型的超参数,以提高预测精度。实验结果表明,PSO-GPR模型的预测精度优于其他模型。

⛳️ 运行结果

🔗 参考文献

[1] 徐彬泰,孟祥鹿,田安琪,等.基于粒子群优化及高斯过程回归的铅酸电池荷电状态预测[J].南京理工大学学报, 2018, 42(2):7.DOI:10.14177/j.cnki.32-1397n.2018.42.02.005.

[2] 刘保国,刘开云,徐冲,等.基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型[J].  2011.DOI:10.3969/j.issn.1000-7598.2011.06.013.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值