【协同任务】基于动态围捕点的多无人机协同策略附Matlab代码

本文提出了一种基于动态围捕点的多无人机协同策略,通过实时调整围捕位置来提高军事侦察、环境监测等领域的围捕效率。策略利用卡尔曼滤波估计目标位置,通过PID控制实现无人机动态飞行。仿真实验验证了其有效性。
摘要由CSDN通过智能技术生成

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

近年来,多无人机协同技术在军事侦察、环境监测、灾害救援等领域得到了广泛应用。如何有效地控制多无人机进行协同作业,是目前研究的热点问题之一。本文提出了一种基于动态围捕点的多无人机协同策略,该策略能够根据目标的实时位置动态调整无人机的围捕位置,提高围捕效率。

关键词

多无人机协同,动态围捕,目标追踪

1. 引言

多无人机协同技术是指多个无人机协同完成任务的能力,它可以提高任务效率、降低成本、增强安全性。近年来,多无人机协同技术在军事侦察、环境监测、灾害救援等领域得到了广泛应用。

在多无人机协同任务中,围捕目标是重要的任务之一。传统的围捕策略通常采用固定位置围捕,即无人机在目标周围的固定位置进行巡逻。这种策略存在效率低、易被目标逃脱等问题。

为了提高围捕效率,本文提出了一种基于动态围捕点的多无人机协同策略。该策略能够根据目标的实时位置动态调整无人机的围捕位置,提高围捕效率。

2. 相关工作

近年来,国内外学者对多无人机协同技术进行了大量的研究。文献[1]提出了一种基于多无人机协同的搜索策略,该策略能够有效地搜索目标区域。文献[2]提出了一种基于多无人机协同的追踪策略,该策略能够有效地追踪目标。文献[3]提出了一种基于多无人机协同的围捕策略,该策略能够有效地围捕目标。

与现有工作相比,本文提出的策略具有以下优点:

  • 动态调整围捕位置,提高围捕效率;

  • 考虑无人机的速度和能量限制,提高围捕成功率;

  • 能够适应不同的目标运动模式,提高围捕的鲁棒性。

3. 动态围捕策略

本文提出的动态围捕策略包括以下几个步骤:

  • 目标位置估计:根据传感器数据估计目标的实时位置。

  • 围捕点计算:根据目标的实时位置和无人机的速度、能量限制计算无人机的围捕位置。

  • 无人机控制:控制无人机按照计算的围捕位置进行飞行。

3.1 目标位置估计

目标位置估计可以使用多种传感器数据,例如雷达、激光雷达、摄像头等。本文使用卡尔曼滤波器估计目标的实时位置。

3.2 围捕点计算

围捕点计算的目标是找到一组无人机位置,使得无人机能够有效地围捕目标。本文使用以下公式计算无人机的围捕位置:

3.3 无人机控制

无人机控制的目标是控制无人机按照计算的围捕位置进行飞行。本文使用PID控制算法控制无人机的位置和速度。

4. 仿真实验

本文进行了仿真实验,验证了动态围捕策略的有效性。仿真实验结果表明,动态围捕策略能够有效地提高围捕效率,降低围捕时间。

5. 结论

本文提出了一种基于动态围捕点的多无人机协同策略,该策略能够根据目标的实时位置动态调整无人机的围捕位置,提高围捕效率。仿真实验结果表明,该策略能够有效地提高围捕效率,降低围捕时间。

📣 部分代码

function dphi=solve_dphi()    dphi0=[0;0;0;0];    A=[];    b=[];    Aeq=[];    beq=[];    n=1;    VLB=[-pi/n;-pi/n;-pi/n;-pi/n];    VUB=[ pi/n; pi/n; pi/n; pi/n];    [dphi,~]=fmincon(@min_J,dphi0,A,b,Aeq,beq,VLB,VUB);end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值