✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
近年来,多无人机协同技术在军事侦察、环境监测、灾害救援等领域得到了广泛应用。如何有效地控制多无人机进行协同作业,是目前研究的热点问题之一。本文提出了一种基于动态围捕点的多无人机协同策略,该策略能够根据目标的实时位置动态调整无人机的围捕位置,提高围捕效率。
关键词
多无人机协同,动态围捕,目标追踪
1. 引言
多无人机协同技术是指多个无人机协同完成任务的能力,它可以提高任务效率、降低成本、增强安全性。近年来,多无人机协同技术在军事侦察、环境监测、灾害救援等领域得到了广泛应用。
在多无人机协同任务中,围捕目标是重要的任务之一。传统的围捕策略通常采用固定位置围捕,即无人机在目标周围的固定位置进行巡逻。这种策略存在效率低、易被目标逃脱等问题。
为了提高围捕效率,本文提出了一种基于动态围捕点的多无人机协同策略。该策略能够根据目标的实时位置动态调整无人机的围捕位置,提高围捕效率。
2. 相关工作
近年来,国内外学者对多无人机协同技术进行了大量的研究。文献[1]提出了一种基于多无人机协同的搜索策略,该策略能够有效地搜索目标区域。文献[2]提出了一种基于多无人机协同的追踪策略,该策略能够有效地追踪目标。文献[3]提出了一种基于多无人机协同的围捕策略,该策略能够有效地围捕目标。
与现有工作相比,本文提出的策略具有以下优点:
-
动态调整围捕位置,提高围捕效率;
-
考虑无人机的速度和能量限制,提高围捕成功率;
-
能够适应不同的目标运动模式,提高围捕的鲁棒性。
3. 动态围捕策略
本文提出的动态围捕策略包括以下几个步骤:
-
目标位置估计:根据传感器数据估计目标的实时位置。
-
围捕点计算:根据目标的实时位置和无人机的速度、能量限制计算无人机的围捕位置。
-
无人机控制:控制无人机按照计算的围捕位置进行飞行。
3.1 目标位置估计
目标位置估计可以使用多种传感器数据,例如雷达、激光雷达、摄像头等。本文使用卡尔曼滤波器估计目标的实时位置。
3.2 围捕点计算
围捕点计算的目标是找到一组无人机位置,使得无人机能够有效地围捕目标。本文使用以下公式计算无人机的围捕位置:
3.3 无人机控制
无人机控制的目标是控制无人机按照计算的围捕位置进行飞行。本文使用PID控制算法控制无人机的位置和速度。
4. 仿真实验
本文进行了仿真实验,验证了动态围捕策略的有效性。仿真实验结果表明,动态围捕策略能够有效地提高围捕效率,降低围捕时间。
5. 结论
本文提出了一种基于动态围捕点的多无人机协同策略,该策略能够根据目标的实时位置动态调整无人机的围捕位置,提高围捕效率。仿真实验结果表明,该策略能够有效地提高围捕效率,降低围捕时间。
📣 部分代码
function dphi=solve_dphi()
dphi0=[0;0;0;0];
A=[];
b=[];
Aeq=[];
beq=[];
n=1;
VLB=[-pi/n;-pi/n;-pi/n;-pi/n];
VUB=[ pi/n; pi/n; pi/n; pi/n];
[dphi,~]=fmincon(@min_J,dphi0,A,b,Aeq,beq,VLB,VUB);
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类