【信号去噪】基于灰狼算法优化VMD实现信号去噪目标函数为包络信息熵 包络熵 排列熵 样本熵最小附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

近年来,变分模态分解(VMD)算法因其高效性和自适应性,在信号去噪领域得到了广泛应用。然而,VMD算法存在参数设置复杂、计算量大等问题。为了解决这些问题,本文提出了一种基于灰狼算法(GWO)优化VMD的信号去噪方法。该方法将GWO算法应用于VMD参数优化,以包络信息熵、包络熵、排列熵和样本熵最小为目标函数,自动调整VMD参数,提高去噪效果。

关键词

信号去噪,变分模态分解,灰狼算法,包络信息熵,包络熵,排列熵,样本熵

1. 引言

信号去噪是信号处理领域的重要研究课题,其目的是从原始信号中去除噪声,提高信号质量。近年来,变分模态分解(VMD)算法因其高效性和自适应性,在信号去噪领域得到了广泛应用。VMD算法是一种非线性、非递归的信号分解方法,它可以将信号分解为多个本征模态分量(IMF),每个IMF分量都具有不同的频率和带宽。通过去除噪声所在的IMF分量,可以实现信号去噪。

然而,VMD算法存在参数设置复杂、计算量大等问题。VMD算法的参数主要包括模态个数K和惩罚因子α。模态个数K决定了信号分解的精细程度,惩罚因子α控制着分解过程的平滑程度。参数设置不当会影响去噪效果。此外,VMD算法的计算量随着模态个数的增加而增加,这限制了其在实时应用中的使用。

为了解决VMD算法存在的问题,本文提出了一种基于灰狼算法(GWO)优化VMD的信号去噪方法。GWO算法是一种基于狼群捕猎行为的智能优化算法,它具有收敛速度快、鲁棒性强等优点。将GWO算法应用于VMD参数优化,可以自动调整VMD参数,提高去噪效果。

2. 灰狼算法

灰狼算法(GWO)是一种基于狼群捕猎行为的智能优化算法,它模拟了狼群在捕猎过程中领导者、追随者和侦察者之间的协作关系。GWO算法主要包括以下步骤:

  1. 初始化狼群位置:随机初始化狼群的位置,每个狼的位置代表一个候选解。

  2. 确定领导者、追随者和侦察者:根据狼群位置的适应度值,确定领导者、追随者和侦察者。领导者是适应度值最高的狼,追随者是适应度值较高的狼,侦察者是适应度值较低的狼。

  3. 更新狼群位置:领导者、追随者和侦察者根据各自的捕猎策略更新自己的位置,并引导其他狼更新位置。

  4. 重复步骤2和步骤3,直到满足终止条件。

3. 基于GWO算法优化VMD

为了提高VMD算法的去噪效果,本文将GWO算法应用于VMD参数优化。将模态个数K和惩罚因子α作为GWO算法的优化变量,以包络信息熵、包络熵、排列熵和样本熵最小为目标函数。包络信息熵、包络熵、排列熵和样本熵是反映信号复杂度的指标,其值越小,信号越平滑。

GWO算法的具体优化流程如下:

  1. 初始化狼群位置:随机初始化狼群的位置,每个狼的位置代表一组VMD参数(K, α)。

  2. 计算狼群适应度值:计算每个狼的适应度值,即包络信息熵、包络熵、排列熵和样本熵的最小值。

  3. 确定领导者、追随者和侦察者:根据狼群适应度值,确定领导者、追随者和侦察者。领导者是适应度值最高的狼,追随者是适应度值较高的狼,侦察者是适应度值较低的狼。

  4. 更新狼群位置:领导者、追随者和侦察者根据各自的捕猎策略更新自己的位置,并引导其他狼更新位置。

  5. 重复步骤2和步骤3,直到满足终止条件。

4. 实验结果

为了验证本文方法的有效性,我们进行了仿真实验。实验数据为一组包含噪声的信号,噪声类型为高斯白噪声。我们将本文方法与传统的VMD算法和基于遗传算法(GA)优化VMD的信号去噪方法进行了比较。

实验结果表明,本文方法在去噪效果和计算效率方面都优于传统的VMD算法和基于GA优化VMD的信号去噪方法。本文方法的去噪效果更好,信噪比更高,计算时间更短。

5. 结论

本文提出了一种基于灰狼算法优化VMD的信号去噪方法。该方法将GWO算法应用于VMD参数优化,以包络信息熵、包络熵、排列熵和样本熵最小为目标函数,自动调整VMD参数,提高去噪效果。实验结果表明,本文方法在去噪效果和计算效率方面都优于传统的VMD算法和基于GA优化VMD的信号去噪方法。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 11
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
最小包络算法是一种优化算法,通常用于求解最优化问题。它通过模拟群体的行为,实现在搜索空间中寻找最优解。 最小包络算法的步骤如下: 1. 初始化个体的位置和速度,括每个目标函数值和值。 2. 根据每个目标函数值和值,确定群体中的alpha(具有最小的目标函数值),beta(次小的目标函数值)和delta目标函数值第三小的)。 3. 通过运用的捕食行为,即追逐和跟随,更新的位置和速度。 4. 根据更新后的位置计算目标函数值和值,并更新alpha、beta和delta。 5. 重复步骤3和4,直到达到设定的终止条件。 在Python中实现最小包络算法,可以使用numpy库进行向量运算,提高计算效率。以下是一个简单的示例代码: ```python import numpy as np def objective_function(x): # 定义目标函数 return x**2 def wolf_pack_search(num_wolves, num_iterations, lower_bound, upper_bound): alpha = np.zeros(num_iterations) # 存储alpha目标函数值 alpha_entropy = np.zeros(num_iterations) # 存储alpha值 wolves_position = np.random.uniform(lower_bound, upper_bound, (num_wolves,)) # 初始化位置 for iter in range(num_iterations): # 计算目标函数值和值 wolves_fitness = objective_function(wolves_position) entropy = calculate_entropy(wolves_position) # 更新alpha alpha_index = np.argmin(wolves_fitness) alpha[iter] = wolves_fitness[alpha_index] alpha_entropy[iter] = entropy[alpha_index] # 运用捕食行为更新的位置 for i in range(num_wolves): A = 2 * alpha[iter] * np.random.random() - alpha[iter] C = 2 * np.random.random() D = np.abs(C * alpha[iter] - wolves_position[i]) wolves_position[i] = alpha[iter] - A * D # 对位置进行限制,确保其在搜索空间内 wolves_position = np.clip(wolves_position, lower_bound, upper_bound) return alpha, alpha_entropy # 示例运行 num_wolves = 10 num_iterations = 100 lower_bound = -5 upper_bound = 5 alpha, alpha_entropy = wolf_pack_search(num_wolves, num_iterations, lower_bound, upper_bound) print("最优解:", alpha[-1]) print("最小值:", alpha_entropy[-1]) ``` 这是一个简单的示例代码,实际应用中可以根据具体问题进行修改和扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值