【滤波跟踪】基于扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)及改进无迹卡尔曼滤波(MAUKF)算法实现滤波跟踪附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

1. 引言

滤波跟踪作为目标跟踪领域的重要组成部分,旨在利用传感器获取的噪声数据对目标状态进行估计,并对目标轨迹进行预测。近年来,随着非线性系统的广泛应用,传统的线性滤波方法已无法满足实际需求,因此非线性滤波方法的研究成为热点。

扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)是两种常用的非线性滤波方法,它们在目标跟踪领域得到了广泛应用。然而,EKF 算法的精度依赖于系统的线性化,而 UKF 算法在高维状态空间中可能会出现滤波精度下降的问题。针对这些问题,本文将介绍一种改进的无迹卡尔曼滤波算法(MAUKF),并将其与 EKF 和 UKF 进行比较,验证其在滤波跟踪中的有效性。

2. 相关算法介绍

2.1 扩展卡尔曼滤波(EKF)

EKF 算法通过对非线性系统进行线性化,将非线性系统近似为线性系统,从而利用卡尔曼滤波的理论进行状态估计。EKF 的基本思路是:

  1. 利用上一时刻的估计值和观测值,对系统进行线性化,得到系统的雅可比矩阵。

  2. 利用雅可比矩阵和上一时刻的协方差矩阵,更新系统的状态估计值和协方差矩阵。

  3. 利用更新后的状态估计值和协方差矩阵,进行下一时刻的预测。

EKF 算法的优点是实现简单,运算效率高,但其缺点是:

  1. 线性化会导致精度损失,尤其是当非线性程度较高时,EKF 的估计结果可能存在较大误差。

  2. EKF 算法对初始状态和噪声协方差矩阵的估计精度要求较高,否则会导致滤波发散。

2.2 无迹卡尔曼滤波(UKF)

UKF 算法利用无迹变换(UT)来近似非线性系统的概率分布,从而避免了线性化过程,提高了滤波精度。UKF 的基本思路是:

  1. 利用 UT 方法对系统的状态向量进行采样,得到一系列样本点。

  2. 利用这些样本点,对系统的非线性函数进行计算,得到系统的预测值和观测值。

  3. 利用预测值和观测值,更新系统的状态估计值和协方差矩阵。

UKF 算法的优点是:

  1. 无需线性化,能够有效处理高维非线性系统。

  2. 能够更好地捕捉非线性系统的概率分布,从而提高滤波精度。

UKF 算法的缺点是:

  1. 算法复杂度较高,运算效率低于 EKF。

  2. 在高维状态空间中,UKF 算法的滤波精度可能会下降。

2.3 改进的无迹卡尔曼滤波算法(MAUKF)

MAUKF 算法是在 UKF 算法的基础上,通过改进采样策略和协方差矩阵更新方法,进一步提高滤波精度。MAUKF 算法主要改进了以下两方面:

  1. 采用自适应采样策略,根据系统的非线性程度自适应地调整采样点数,提高采样效率。

  2. 采用新的协方差矩阵更新方法,更准确地估计系统状态的协方差矩阵,提高滤波精度。

MAUKF 算法的优点是:

  1. 能够有效处理高维非线性系统,并保持较高的滤波精度。

  2. 运算效率更高,比 UKF 算法更加高效。

3. 滤波跟踪的实现

基于上述三种算法,可以实现对目标进行滤波跟踪。具体流程如下:

  1. 初始化: 初始化目标状态向量、协方差矩阵、过程噪声协方差矩阵和测量噪声协方差矩阵。

  2. 预测: 根据系统的状态方程和过程噪声协方差矩阵,预测目标状态和协方差矩阵。

  3. 更新: 根据测量方程和测量噪声协方差矩阵,更新目标状态和协方差矩阵。

  4. 循环: 重复步骤 2-3,直到跟踪结束。

4. 仿真实验

为了验证上述三种算法在滤波跟踪中的性能,本文进行了一系列仿真实验。仿真实验的环境为:

  • 目标模型:匀速直线运动模型

  • 传感器:雷达传感器

  • 噪声:高斯白噪声

仿真实验结果表明,MAUKF 算法在滤波精度和运算效率方面都优于 EKF 和 UKF 算法,尤其是当系统非线性程度较高时,MAUKF 算法的优势更加明显。

5. 结论

本文对 EKF、UKF 和 MAUKF 三种非线性滤波算法进行了介绍,并将其应用于滤波跟踪,仿真实验验证了 MAUKF 算法在滤波精度和运算效率方面的优势。

⛳️ 运行结果

🔗 参考文献

[1] 刘翔,宋常建,胡磊,等.基于无迹卡尔曼滤波的单站混合定位跟踪算法[J].探测与控制学报, 2012, 34(3):5.DOI:CNKI:SUN:XDYX.0.2012-03-014.

[2] 靳璐.机动目标跟踪及无迹滤波(UKF)的相关应用研究[D].中北大学[2024-05-22].DOI:10.7666/d.y1509409.

[3] 张凯.基于改进无迹卡尔曼滤波算法的水下目标跟踪[J].计算机应用与软件, 2022(009):039.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值