✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 引言
滤波跟踪作为目标跟踪领域的重要组成部分,旨在利用传感器获取的噪声数据对目标状态进行估计,并对目标轨迹进行预测。近年来,随着非线性系统的广泛应用,传统的线性滤波方法已无法满足实际需求,因此非线性滤波方法的研究成为热点。
扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)是两种常用的非线性滤波方法,它们在目标跟踪领域得到了广泛应用。然而,EKF 算法的精度依赖于系统的线性化,而 UKF 算法在高维状态空间中可能会出现滤波精度下降的问题。针对这些问题,本文将介绍一种改进的无迹卡尔曼滤波算法(MAUKF),并将其与 EKF 和 UKF 进行比较,验证其在滤波跟踪中的有效性。
2. 相关算法介绍
2.1 扩展卡尔曼滤波(EKF)
EKF 算法通过对非线性系统进行线性化,将非线性系统近似为线性系统,从而利用卡尔曼滤波的理论进行状态估计。EKF 的基本思路是:
-
利用上一时刻的估计值和观测值,对系统进行线性化,得到系统的雅可比矩阵。
-
利用雅可比矩阵和上一时刻的协方差矩阵,更新系统的状态估计值和协方差矩阵。
-
利用更新后的状态估计值和协方差矩阵,进行下一时刻的预测。
EKF 算法的优点是实现简单,运算效率高,但其缺点是:
-
线性化会导致精度损失,尤其是当非线性程度较高时,EKF 的估计结果可能存在较大误差。
-
EKF 算法对初始状态和噪声协方差矩阵的估计精度要求较高,否则会导致滤波发散。
2.2 无迹卡尔曼滤波(UKF)
UKF 算法利用无迹变换(UT)来近似非线性系统的概率分布,从而避免了线性化过程,提高了滤波精度。UKF 的基本思路是:
-
利用 UT 方法对系统的状态向量进行采样,得到一系列样本点。
-
利用这些样本点,对系统的非线性函数进行计算,得到系统的预测值和观测值。
-
利用预测值和观测值,更新系统的状态估计值和协方差矩阵。
UKF 算法的优点是:
-
无需线性化,能够有效处理高维非线性系统。
-
能够更好地捕捉非线性系统的概率分布,从而提高滤波精度。
UKF 算法的缺点是:
-
算法复杂度较高,运算效率低于 EKF。
-
在高维状态空间中,UKF 算法的滤波精度可能会下降。
2.3 改进的无迹卡尔曼滤波算法(MAUKF)
MAUKF 算法是在 UKF 算法的基础上,通过改进采样策略和协方差矩阵更新方法,进一步提高滤波精度。MAUKF 算法主要改进了以下两方面:
-
采用自适应采样策略,根据系统的非线性程度自适应地调整采样点数,提高采样效率。
-
采用新的协方差矩阵更新方法,更准确地估计系统状态的协方差矩阵,提高滤波精度。
MAUKF 算法的优点是:
-
能够有效处理高维非线性系统,并保持较高的滤波精度。
-
运算效率更高,比 UKF 算法更加高效。
3. 滤波跟踪的实现
基于上述三种算法,可以实现对目标进行滤波跟踪。具体流程如下:
-
初始化: 初始化目标状态向量、协方差矩阵、过程噪声协方差矩阵和测量噪声协方差矩阵。
-
预测: 根据系统的状态方程和过程噪声协方差矩阵,预测目标状态和协方差矩阵。
-
更新: 根据测量方程和测量噪声协方差矩阵,更新目标状态和协方差矩阵。
-
循环: 重复步骤 2-3,直到跟踪结束。
4. 仿真实验
为了验证上述三种算法在滤波跟踪中的性能,本文进行了一系列仿真实验。仿真实验的环境为:
-
目标模型:匀速直线运动模型
-
传感器:雷达传感器
-
噪声:高斯白噪声
仿真实验结果表明,MAUKF 算法在滤波精度和运算效率方面都优于 EKF 和 UKF 算法,尤其是当系统非线性程度较高时,MAUKF 算法的优势更加明显。
5. 结论
本文对 EKF、UKF 和 MAUKF 三种非线性滤波算法进行了介绍,并将其应用于滤波跟踪,仿真实验验证了 MAUKF 算法在滤波精度和运算效率方面的优势。
⛳️ 运行结果
🔗 参考文献
[1] 刘翔,宋常建,胡磊,等.基于无迹卡尔曼滤波的单站混合定位跟踪算法[J].探测与控制学报, 2012, 34(3):5.DOI:CNKI:SUN:XDYX.0.2012-03-014.
[2] 靳璐.机动目标跟踪及无迹滤波(UKF)的相关应用研究[D].中北大学[2024-05-22].DOI:10.7666/d.y1509409.
[3] 张凯.基于改进无迹卡尔曼滤波算法的水下目标跟踪[J].计算机应用与软件, 2022(009):039.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类