【光伏预测】基于侏儒猫鼬优化算法DMO优化Transformer回归预测实现光伏预测附Matlab代码

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

在能源预测领域,准确预测光伏发电量对于电网调度、能源管理具有极其重要的意义。本文将深入探讨如何利用基于侏儒猫鼬优化算法(Dwarf Mongoose Optimization, DMO)优化的Transformer回归模型实现前沿的光伏预测技术。

■ 01. 导语

随着全球能源结构的转型,光伏发电作为一种清洁可再生能源越来越受到重视。然而,光伏电站的能量输出受天气、季节等因素影响较大,因此,高精度的光伏能量预测技术对提升光伏电站的运营效率及电网的稳定性至关重要。

■ 02. DMO优化算法简介

侏儒猫鼬优化算法是模拟侏儒猫鼬社会行为的一种高效群体智能算法。该算法以其快速搜索和强大的全局寻优能力在众多领域显示出优越性。尤其在解决复杂的优化问题上,DMO能够迅速定位到最优解附近,为模型提供更加精确的参数配置。

■ 03. Transformer模型概述

Transformer模型自从提出以来,因其独特的自注意力机制而在自然语言处理领域大放异彩。其在处理序列数据方面的出色表现,使其在时间序列预测问题中也开始得到应用。

■ 04. DMO优化Transformer模型

在光伏预测问题中,我们将Transformer模型作为回归模型使用,通过DMO优化算法对其参数进行优化。具体来说,DMO算法用于优化Transformer中的权重和偏置,以期达到更好的特征学习能力和预测精度。

■ 05. 实验结果与分析

实验表明,采用DMO优化的Transformer模型在光伏预测上的表现优于传统的BP神经网络及其他智能优化算法。该模型不仅预测精度高,而且训练效率高,能够快速适应不同光伏电站的数据特性。

■ 06. 未来展望

未来的研究可以进一步探索DMO算法的其他变体以及与其他深度学习模型的结合可能,如结合卷积神经网络(CNN)来处理更复杂的时空数据,以进一步提高模型的泛化能力和预测准确性。

通过整合侏儒猫鼬优化算法和Transformer模型,我们不仅开辟了光伏预测技术的新路径,也为相关领域的研究者提供了一种全新的解决方案。这一创新方法的应用,无疑将推动光伏产业及相关技术的进一步发展

⛳️ 运行结果

🔗 参考文献

[1] 刘自然,王煜轩.基于深度卷积GRU的转子系统故障诊断[J].组合机床与自动化加工技术, 2023(1):101-104.

[2] 王力,李志新,张亦弛.基于红外的SSA-CNN-GRU电路板芯片故障诊断[J].激光与红外, 2023, 53(4):556-565.

[3] 张龙,甄灿壮,易剑昱,等.双通道特征融合CNN-GRU齿轮箱故障诊断[J].振动与冲击, 2021, 40(19):8.DOI:10.13465/j.cnki.jvs.2021.19.030.

[4] 周涛涛,张冬,原宗,等.一种基于GRU的旋转机械故障诊断方法:CN202011355499.X[P].CN112488179A[2024-07-13].

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
  • 18
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
根据引用内容,侏儒优化算法(Dwarf Mongoose Optimization,DMO)是一种群体智能优化算法,其灵感来源于侏儒的群体觅食行为。引用中还提到了DMO算法Matlab代码和python代码。 因此,你可以在Python中实现侏儒优化算法。以下是一个简单的Python代码示例: ```python # 导入所需的库 import numpy as np # 定义侏儒优化算法函数 def dwarf_mongoose_optimization(objective_func, num_dimensions, num_iterations, population_size): # 初始化种群 population = np.random.uniform(low=-1, high=1, size=(population_size, num_dimensions)) # 迭代优化过程 for iteration in range(num_iterations): # 计算适应度值 fitness_values = objective_func(population) # 选择最佳个体 best_individual = population[np.argmax(fitness_values)] best_fitness = np.max(fitness_values) # 更新种群 new_population = np.zeros_like(population) for i in range(population_size): # 随机选择两个个体 indices = np.random.choice(population_size, size=2, replace=False) individual1 = population = individual1 + np.random.uniform(low=-1, high=1) * (best_individual - individual2) population = new_population return best_individual, best_fitness # 定义适应度函数(示例) def objective_func(x): return np.sum(x**2, axis=1) # 设置算法参数 num_dimensions = 10 num_iterations = 100 population_size = 50 # 运行侏儒优化算法 best_individual, best_fitness = dwarf_mongoose_optimization(objective_func, num_dimensions, num_iterations, population_size) # 打印结果 print("最佳个体:", best_individual) print("最佳适应度:", best_fitness) ``` 请注意,这只是一个简单的示例代码,你可以根据自己的需求进行修改和扩展。在实际应用中,你需要定义自己的目标函数,并根据具体问题进行参数调整和结果分析。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值